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Abstract. The crystal energy of iron pyrite, ideally of composition FeSz, is evaluated with
at ionic model, assuming atoms in the solid to be ionized as Fe?t and §~. To calculate
the proper caystal energy, terms accounting for the static clectrie dipole moments of
the sulphur ions have to be included. For this purpose, so-called electrostalic lattice
constants are introduced, with Madelung's constant bLeing the first term of a Tylor
expansion for the electrostatic interaction energy. Following these considerations, a
theoretical crystal energy of —2835 kJ per mole of pyrite is calculated. The formalism
gives a first estimation of the strength of the sulphur dipole moment in the FeSz laitice:’
ps =12.3 % 107* C m (3.7 D). The thermodynamic Born-Haber cycle is generalized
to include polarized species, yielding an ‘experimental’ value for the crystal energy of
—2893 kI per mole of pyrite, which differs only by 2% from the theoretical one.

1. Introduction

For many years the structural, optical, electronic and other properties of semicon-
ducting iron pyrite, ideally of composition FeS,, have been investigated by solid-state
physicists and chemists (for recent reviews see [1, 2]). However, until now no in-
formation concerning the crystal energy of the material has been reported, although
its structure is cubic and the summation should be done easily. Because of the high
absorption coefficient for electromagnetic radiation in the visible range and its non-
toxic constituents, pyrite has gained interest as a potential solar-cell material in the
recent decade [3-7]. Therefore it seems important to understand the basic properties
of the material. Here, crystal energy calculations are presented for iron pyrite and
compared with an experimental value derived from the Born-Haber cycle.

The theoretical crystal energy W, consists of different terms, describing interac-
tions of attractive and repulsive nature between the atoms in the crystal lattice. Most
important are the electrostatic interaction W, and the core—core repulsion W), the
latter accounting for the interaction between electronic cores of the ions. The parts
of the internal energy due to thermal vibrations and van der Waals attraction are
usually small compared with the other terms. For alkali halides and compounds in
the sphalerite structure, the electrostatic interaction W, is sufficiently described by a
point-charge model, leading to a sum of lattice points, which is well known as the
Madelung constant. But for the evaluation of pyrite’s crystal energy it is important to
incorporate dipole terms, too. Owing to the crystal’s geometry, dipole moments are
only located at sulphur atoms, as was first pointed out in [8]. Because the strength of
those dipole moments, p, is unknown at present, the crystal energy calculation will

0953-8984/92/296227+14504.50 © 1992 IOP Publishing Lid 6227



6228 M Birkhok

be used to find a first approximation of it. A p-dependent expression for the crystal
energy will be derived and solved with equations describing equilibrium bond lengths
and compressibility of pyrite.

The Born-Haber cycle computes the crystal energy by dividing the formation
reaction of the solid into its chemical subprocesses and balancing the energies (heat
of sublimation, electron affinity, ionization energy, etc.). The summation procedure is
based on an ionic model, which, as is well known, was successfully used to calculate
the crystal energy of jonic alkali halides [9). For the case considered here, atoms are
imagined to be ionized as Fe?* and S~. It will be shown that the ionic mode] leads
to reliable results for the crystal energy of pyrite, if the Born~Haber cycle is slightly
extended, to account also for the occurrence of polarized ions within the lattice.

2. The pyrite structure

The pyrite structure is often compared with that of NaCl, because metal atoms in both
crystals span a face-centred cubic (FCC) sublattice in which the anions are embedded.
In NaCl the halogen FCC sublattice is shifted by a translation vector r = (3, 5,1)
relative to that of Na atoms. In pyrite (space group Pe3, No. 205) sulphur atoms
are grouped as S, dimers with their centre of mass occupying Cl positions of the
NaCi structure (see figure 1). The dimers are directed along (111} directions with
§ atoms on symmetry-related coordinates. To arrive at FeS, the unit cell with four
irons must contain eight S atoms in the ideally stoichiomctric compound. Their
8 x 3 coordinates are described by one suiphur positional parameter u. The atoms’
coordinates are compiled in table 1.

There are two inter-ionic distances in the pyrite crystal, accounting for the
sulphur-iron and sulphur-sulphur distances respectively. If they are abbreviated in
fractional coordinates by d; and d,, it can be shown that they depend on the sulphur
positional parameter u as

dy = [u? + 2(1 - 0?)'"? (1a)
dy = V3(1 - 2u). | {16)

To get their absolute values, d; and d, are to be multiplied by the cubic cell length
a. The positional parameter u was measured [10] to be 0.38505(5), whereas the
unit-cell edge e is slightly less than 5.41870 A, depending on the degree of sulphur
deficiency [11).

Table 1. The pyrite unit cell contains four formula units FeS;. The ion positions are
specified in fractional coordinates of the cube edge a; u stands for the sulphur positional
parameter (u = 0.385). The directions of S dipole moménts are specified with unit

VECLOrs 7.

Fe 000 0,35 70,3 3130

S x(w,uw,u)  Fru,sFu kv FuiFwbie pruduiFe
ng  £[111]/V/3F  [i11)/V3 +[1111/V3 £[111)/v3
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Figure 1. Projection of ihe cubic pyrite structure
(space group Pa3), with broken lines indicating
borders of the unit cell. Iron atoms build up an Fcc
sublattice and are indicated at the height 0, £ and |
by small white and black circles. The eight sulphur
atoms in the unit cell are differently shaded accord-
ing to their different heights. They are all marked
with an arrow, indicating the direction along which
the dipole moment unit vector ng is oriented (com-
pare with table 1), Because sulphur atoms occupy
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Figure 2. Sulphur coordination tetrahedron. The
sulphur atoms in the pyrite lattice are linked to
three Fe and another § atom (black and white
circles, respectively). If the atoms are assumed to
be ionized, such a charge configuration must lead
to an electric field F(u) at the central sulphur
position, polarizing the atom in the direction of the
sulphur-sulphur bond. This is in sharp contrast to
atoms in NaCl or ZnS structure, where electric feid
vectors of other lattice points cancel ore another.

equivalent crystallographic positions, the strength
of the dipole moment is the same for all of them.
It is evaluated to be & = 0.141¢a,e being the
elementary charge and o the unit cell length.

The local coordination of the iron atoms is an octahedron with a slight tetrahedral
distortion of 4° (point group Cg;) and can be approximated for most considerations as
octahedral (point group O, ). The local coordination of sulphur atoms is a compressed
tetrahedron, with three corners occupied by Fe atoms and the fourth by the other 8
atom of an S, dimer (point group C,). The sulphur atoms do not occupy centres of
inversion in the lattice. It is easy to see that the sum of electric fields from the next
point-charge neighbours does not cancel at the S position—as it does in the case of
Cl atoms in NaCL On the contrary, the next-neighbour interaction results in a net
electric field along the same direction in which S, dumbbells are oriented, ie. (111}
(see figure 2).

Also the summation over all point charges of the lattice yields a non-vanishing
component of the electric field oriented along {111) axes at the sulphur positions.
This must cause a static polarization of the atom. To account for this, the ionic model
must be extended, so that the electrostatic potential of the sulphur ions is described
by two terms: its charge zg and jts dipole moment pg. Because the {111) axes are of
threefold rotational symmetry, it is easy to understand from a crystallographic point
of view that the dipole moment has to be oriented along this direction. Every other
orientation of the dipole vector would come into conflict with the point symmetry
of the sulphur position. For each of the eight S atoms in the unit cell, the dipole’s
direction is specified in table 1. The sum of all dipole moments (P = T, ) does not
manifest itself in a macroscopically measurable polarization of the crystal, since two
dipole moments of an S, dimer are directed antiparallel and sum to zero.

At the Fe position the sum of electric fields from all other lattice points is zero
because the iron atoms occupy centres of inversion, ie. for every field vector arising
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from a charge g at r there is another charge g at —r, 50 that their fields cancel, This
argument does not hold for the potential, as is well known from the non-vanishing
Madelung constant. But the dipole moment associated with iron atoms is assumed to
be zero because there is no exciting fieid.

3. The theoretical crystal energy

The calculation of the theoretical crystal energy W,, is donc by summing two terms
describing the clectrostatic interaction W, and the core—core repulsion W,, They will
be developed now, The thermal energy and van der Waals attraction are neglected.
Most generally, the electrostatic interaction between a source at a point in space r,,
and a charge distribution at »; can be written as a Taylor expansion, of which the
first two terms are:

0 (ri) — (s | F (ri2)) o

where g; and p; are the first and second moments of the charge distribution (j.e.
net charge and dipole moment), r;, = r; — v, is the distance vector, and ¢ and F
arc the potential and field with which the interaction is to be evaluated. Because
considerations are limited to a situation described by point charges and point dipoles,
the potentials and fields associated with them have to be taken:

((I,mon + (I,d|p) {l—’-z Fmon_{_Fdlp) (3)

The potential of a point charge is simply ¢/r;.. So the first term has to be extended
over all point charges in the crystal and be multiplied by 1 to avoid double summation
when the energy per mole is added. This term is the Madelung constant o™:

W= e 2 T L C By B @
471'602 Ty 4wepa 2 el p,k 41r£0a :

with e being the elementary charge and ¢, the vacuum dielectric constant. Using
fractional coordinates p and writing »;, = apyy the unit-cell !ength a can be placed
before the sum. In contrast to the situation in the alkali halides, o™ in pyrite yiclds
differing values for the iron and sulphur sites, respectively; ¢ =-1 or 2 should therefore
indicate the Fe or the S atom (z, = 42,2, = —1).

To evaluate the second term in (3) the sum is to extend over the elcctrostatic
p%tentia] of all dipoles, yielding a new geometric sum of lattice points abbreviated by
[ 5 g

' ey =z (| Pir) eL. 4
plip = =8 Zi S = ! : : 5
% dmeya? 2 k%f Pik 471'600.20 ©)

where u stands for the strength of the dipole and the unit vector n for its direction
(see table 1), With the notation developed before, the two last terms in (3) give
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where the electric fields of point charges and dipoles have been inserted. The sums
a™, ad, 8™ and 39 will be referred to as electrostatic lattice constants. The notation
is chosen such that o always indicates a sum of potentials, whereas G accounts for
fields, and superscripts m and d are abbreviations for monopoles and dipoles. In the
pyrite space group Pa3 the distances of ions p;; are dependent on the positional
parameter u (see equations (1a,b)) and therefore all electrostatic lattice constants are
dependent on it (o = a(u),8 = F(u), etc.).

Adding all the electrostatic energy terms for one molecular unit FeS, gives (Ny,
being Loschmidt's number)

2 2
W= g (o +20) + Shtof, + 208 - 285) - L5268 0
where i = 2 terms (subscript S) occur twice because there are twice as many sulphur
as iron atoms per mole of pyrite. The Fp, terms are missing because they all vanish
at a lattice site with inversional symmetry.

Let us consider the terms describing the core-core repulsion. The repulsive in-
teraction is described with a hardness parameter » and a proportionality constant B.
The core-core repulsion is assumed [12] to be inversely proportional to the distance
between atoms to the power n. Expressing bond lengths again in fractional coordi-
nates (see equations (la,b)), and taking into account only repulsion between nearest
neighbours, yields

Nt /68, B,

W, = dme, (d’l‘a" + dgmam) @)
with B,, B, and n, m being the parameters for the iron-sulphur and the sulphur-
sulphur bond, respectively. There are six times more Fe-S than S-S bonds in FeS,,
so the first term is multiplied by 6.

For a heteropolar bond n is assumed to be the geometric mean of the hardness
parameter of both sorts of atoms [13], with n = (ngng,}/? in the case considered
here, if 7y, and ng are assumed to be the hardness parameters of the iron and sulphur
ions, respectively. The same rule yields for the sulphur-sulphur bond m = ng.
Pauling proposed [14] values of 9 for ions with an electronic configuration as in Aur,
3pS, or as in Cut, 3d’®. The Fe ions in pyrite have 3d° configurations and the
hardness parameters can therefore be assumed to be smaller, so np, = 8 is taken.
In the case of ng the calculations were done with ng = 9, but it could be smaller,
because the S~ configurations are also not that of a filled electron shell. Furthermore,
Goldschmidt recommended to reduce ng by a correction term k, because sulphur
atoms are not sixfold, but only fourfold coordinated, & being 0.935 in this case
(after [14]). To simplify the calculation it is assumed that n = m. An arithmetic
mean is evaluated for » weighted by the number of bonds:

n = [6(kngnge)'/” + kng]/7 ®
which gives for the values specified n = m = 8.23. With this value ali the following
calculations were performed.

The final expression for the crystal energy of one molecular unit of pyrite then
becomes

Ny €? _
Wi = frew (O‘?e + 208 + A(of, + 20§ - 267)

" 6B B
uzuzﬁ§’+di,,an1_1 +d§a§_1) (10)
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where the abbreviation i = p/ea is introduced to provide the ‘natural energy unit
e?f4meya of the system. This expression contains only the dipole moment y and
the repulsion constants B, and B, as unknowns. Their solution is accomplished with
three equations, two of them describing the equilibrium of the crystal:

(dW,,,/da)
(dWy/du)

laza, =0 (11a)
luzu, =10 (116)

where a, and wu, represent the measured unit-cell length and sulphur positional
parameter as mentioned above. Whereas equation (11a) was first used successfully
for the calculation of the crystal energy of alkali halides, there is no equivalent of
(11b) for that case. But it is intuitively clear that the system will minimize its energy
also with respect to this free parameter and that both equations will hold, if the
new parameter occurs. The third equation comes from the measurement of the bulk
modulus I, which, in cubic crystals with four formula units per unit cell (as Nacl,
ZnS, FeS,, etc.), is related to the equilibrium cell edge a, as

4 d? W, .
Seda N | % (2)

axag

The bulk modulus of pyrite was measured [15] to be 1.18(4) x 10'! N m~2. Egqua-
tion (12) accounts for the physical situation of shortening all bonds in the unit cell,
because S-Fe and also S-S bonds are dependent on a. In alkali halides this equation
is normally formulated as dependent on the interatomic distance (being a /2), which
is not possible for pyrite owing to two different bond lengths in the crystal,

The solution of this system of equations is shown in the appendix. A solution is
also given for the case when the cxistence of dipoles within the Jattice is denied, ie.
if 4+ =0 is assumed. Then the hardness parameter n may be regarded as the third
unknown instead of u. The results of both solutions will be given and compared.
One difficulty arises in connection with equation (116), because the derivatives of
the eclectrostatic lattice constants « and /A with respect to u have to be evaluated
numerically, which is 2 computer-time-consuming task. Details concerning the calcu-
lation of the electrostatic lattice constants of pyrite and their derivatives will be given
elsewhere [16]. '

4. The electric field at the sulphur position

As was shown above, there is a net electrical field acting at the sulphur position.
The occurrence of such a field is in sharp contrast to crystal lattices where only the
electric potential of all other point charges gives a non-vanishing sum as in the rock
salt or sphalerite structure. The field will be abbreviated F(u), with u accounting for
the sulphur positional parameter. The strength of this electric field can be calculated
with the t00ls developed above. For this one makes use of the fact that both vectors
p and F(u) must be oriented along the (111) axes. Every other orientation would
be incompatible with the symmetry requirements of the crystal’s structure. From
equation (6) the field strength may be written as

F(u) = (2e/4re,a®)(BF + £62) (13)
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where the factor 2 reappears to cancel its inverse that was introduced to avoid double
summation of energies. This equation allows the determination of F(u) as a function
of known values. Because S atoms occupy equivalent positions in the pyrite structure,
this holds for all the eight S positions in the unit cell.

The significance of an electric field within an ionjc model of the crystal may not
be easily understood. It may be argued that ions in electric fields would move in the
field’s direction, which would indeed be the case for a true point charge. But charge
distributions of atoms and ions are described by more complicated solutions of the
wave equation. An applied electric ficld will cause a deformation of such a kind
that it is neutralized at any point within the charge distribution. It is clear that such
quantum-mechanical considerations would go beyond the scope of the ionic model of
crystals, however far it may be extended to higher electrical moments. We deal with
this seeming contradiction by assuming the ions to be fixed at their lattice sites and
assign a dipole moment to them, whenever they occupy positions with non-vanishing
electrostatic lattice constants of the 3 type.

5. The Born—Haber cycle

To determine an experimental value of the crystal energy, which can be compared
with the theoretical one as calculated with formulae above, one usually evaluates the
Born-Haber cycle (see figure 3). It makes use of the fact that the sum of energies
of all steps in a thermodynamic cycle should be equal to zero [9, 17]. The first step
stands for the invesrse formation of the solid from the elements, which is accounted
for by the negative heat of formation (—Hy). Then follows the sublimation of
the elements at standard temperature and pressure (energy of sublimation Sub). In
the case of iron this produces monatomic gaseous species; however, with sulphur
the sublimation produces higher-order gaseous species. These must then dissociate
(dissociation energy D). The next step promotes the monatomic species to their
proper charges: the iron atoms must be ionized (first and second jonization potential
I) and the sulphur must accept one electron {(electron affinity £.A).

For the Born-Haber cycle developed for crystals containing only unpolarized ions,
it is the combination of the gaseous charged species into the crystal that releases the
crystal energy Wyy. Its value can be extracted if others are known. For this case of
pyrite, a modification of the cycle i8 necessary, because we have to account for the
work W, done on S ions by polarizing them. We assume this process to happen after
the ionization of the S atom (see figure 3). A new thermodynamic cycle energy Woyg
therefore is introduced, which is linked with the old one by Wpy = Woqo + W If
W’p is not counted separately, it remains hidden within a too-large value obtained for
Wgy.

The work for inducing a dipole moment to a charge distribution is z¢- F' /2, where
¢ accounts for the resulting dipole strength and F is the exciting field. But if a field
is applied the relaxation of the dipole within it must also be considered [17], which is
given by the potential energy of the system —u - F. The polarization work W, done
for the sulphur ion is the sum of both

szu-Ff’?—p-F:—u-F/Z. {14)

The polarization of S ions therefore is an energy-releasing process, as was the
acceptance of an electron by the neutral S atom. Its value may bot be drawn easily
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Figure 3. Energy-consuming and -releasing pro-
cesses of the generalized Born-Haber cycle for the
pyrite system. All steps of the cycle must sum up to

zero; —Hp+Sub+ D+ T+ EA+ W+ Wre =

0. 'Tb account for the polarization of 8 jons (pol
§™) within the Iattice, a polarization process is in-
serted after the jonization of the § atoms, which
releases the energy Wy = —p. F/2. The value of

Crystal energy [£J/mol]
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Figure 4. Schematic drawing of the crystal ener-
gies due to theoretical and thermodynamic cycle
considerations as a function of order of electric
moments used. Taking into account only monopole
interactions causes the difference of both to be-
come as large as 15%. This is reduced to 2% if for
the crystal energy evaluations second-order electric
moments are included.

‘o can only be calculated with the help of formu-
lae developed for the theoretical crystal energy.

from thermodynamic or atomic data books as the other parameters of the cycle.
But the formalism developed for the theoretical crystal energy provides equations
to calculate p of the sulphur ion (equation (Ad)) and F{u) (equation (13)), from
which W, can be calculated. It should be emphasized that one should discriminate
between the field acting at the S ions in the gas phase as a part of the thermodynamic
cycle and F(u}, which appears within the crystal. But their strengths are assumed to
be equal, because in both cases the same polarization is achieved., A correction of
the Born-Haber cycle, as proposed above, changes its character from relying purely
upon experimental data to being a thermodynamic cycle that is also dependent on
theoretical considerations.

6. Results and discussion

Table 2 shows the calculated electrostatic lattice constants and their derivatives with
respect to the S positional parameter u. It can be scen that the newly introduced
constants such as o and [ are in the typical range of Madelung constants calculated
for other types of crystals; of, and o are negative and indicate a bonding energy.
They are in agreement with the only values to be found in the literature [18]. The
physical meaning of the « derivatives can be understood by regarding only the first
bonding sphere around the atom under consideration. For the Madelung constant
they are positive, ie. the monopole interaction energy is decreased. This is in agree-
ment with lowering of the Coulomb attraction with increasing u, which causes the
5-Fe bond to become stretched.

The terms of,, 2c§ and ~287, which account for the interaction between dipoles
and point charges, are negative. But the share of the crystal energy represented by
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Table 2 Electrostatic lattice constants for iron and sulphur positions in the pyrite lattice
and their derivalives with respect to the sulphur positional parameter u (both evaluated
at ug = 0.383).

m m & d m d
OFe og Uy &3 B3 85

Electrostatic -7.458 —1.957 -2898 -1184 2.632 —=2561
lattice
constant
Derivative 5.05 664 =272 =537 67.3 —35583
dfdu

them is obtained by multiplying them with the dipole moment f, see formula (10).
Whether they stand for attractive or repulsive forces depends on the sign of g,
ie. its direction along {111) axes. The term (—(3§) describing the dipole—dipole
interaction is positive and stands for a repulsive force because it is proportional to 2.
Increasing » means—in terms of first bonding sphere considerations—that antiparallel
dipole moments are becoming closer and the repulsion is enhanced. From this it is
understandable that d{~/3g)/du is also greater than zero.

Inserting the values of the electrostatic lattice constants into equation (A4) gives
a dipole moment associated with the sulphur atom in the pyrite lattice of i = 0.141
in units of ea or 12.3 x 1073% C m (3.7 D). The positive sign indicates that the
dipole vector points to the S dumbbell neighbour. It also means that the negatively
polarized part is directed towards the centre of mass of the iron neighbours, which
could have been expected by simple electrostatic considerations. The sign of & causes
the term fi(ad, + 2od — 262) w become negative. The associated forces therefore
are attractive, ie. the S dipole in pyrite strengthens the bonding. The electric field at
the sulphur position s obtained by equation (13) to amount to 2.23 x 10'° V.m™!,
whose significance and consequences will be discussed elsewhere.

With these values the theoretical crystal energy can now be calculated, which
will first be discussed for the assumption of zero polarization, u = 0. As is shown
in the appendix, the system of equations (11a,b) and (12} can be solved under this
assumption with the hardness parameter n as the new variable instead of p. The
results obtained will not be given here in full detail; instead it should only be men-
tioned that a negative repulsion constant B,, a hardness parameter of n = 9.72
and W,, = ~2617 kJ mol~! are calculated. It is clear that a negative B, does not
make sense physically and n is implausibly large. Table 3 gives the energies for the
Born-Haber cycle of the pyrite system and references for the values. A compilation
was attempted with only thermodynamic data that were measured for 7 = 298 K.
The sum of the normal Born-Haber cycle energy per mole of FeS, is added to be
Wpay = —3058 kJ. This differs by 15% from the monopole solution crystal energy
W,,, as mentioned above.

The solution with p # 0 gives much more reliable results. Tor this case, use
is made of the hardness parameter as estimated above, n = 8.23. Then, both
repulsion constants B; and B, become positive and can be calculated with the help
of formula (A6) and (A7)

B, /d}e™! = 0.262 B,/die™ ! =0.134.

Comparing them with the electrostatic lattice constants (table 2), it can be seen that
these terms are an order of magnitude smaller and therefore determine the associated
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Table 3. Generalized Born-Haber cycle for the pyrite system with the energy values piven
for each process. The sum of the energies should equal zero. Therefore the unknown
experimental erystal energy Wpy or Wre can be caleulated with the help of the other
thermodynamic and atomic data. Symbols (s) and (g) indicate solid and gascous state;
o stands for the o modification of sulphur; for other symbols see text.

Energy
Step Process (kI mol—1) Ref
—Hr  FeSp(s)oFe(s)+18s(s,a) 1746 2]
Sub 18s(s, @) — 1S(g) i(106) - tRT [20]°
Fe(s)—Fe(g) 4163—RT [21]®
D $Ss(2)~ S2(2) +(387) - 2RT [22°
S2(g)— 25(8) 425 ’ [23]
I Fe— Fe?+ 2324 [24]
EA 2528~ 2(~200.2) [25]
W, 25~ = 2pol(3~) 2(—82.4) This work
Wre Fe?* + 25— —FeS; —2893 This work

Wgp = HF -Sub—-D—-f- FA= —-3058 K] mol™!
Wre = Way — Wp = -2893 kI moi~!

@ These values account for enthalpies and have lo be corrected by RT(R = universal
gas constant, T' = 298 K} io give energies.

energy to be roughly only 10% of the total crystal energy. This is the same situation
as for alkali halides [9). Table 4 shows the different parts of which the crystal energy
is composed. The monopole interaction is almost as strong as the whole sum. The
core—core repulsion leads to a reduction of ~ 10%, but this is balanced by the
interaction of dipoles with point charges. Being smaller than 1% of the whole crystal
energy, the dipole—dipole interaction s negligible. The whole crystal energy is added
to give W, = —2835 kJ mol~!,

Table 4. Composition of the theoretical crystal energy due to single terms of equation
(10) accounting for electrostatic interaction (4)}=(6) and core—core repulsion (8), setting
the hardness parameter n = 8.23. Values are given in KJ mol™!,

() Npe{al + 2al)/4mepa =2917
@  Npeulof,+ 208 - 287)/4mega® -382
(3 Nop?(-288) fdrequ’ +26

(#H  NLe(6B,/dl + Br/dR}faTeoa™  +438

S = 2835

If this is compared with the value obtained by the normal Born-Haber cycle, we
still have to state a difference of 7% between them. This is clear progress compared
to the situation as given above. But if the polarization work W, is inserted as a new
step within the cycle, and 4 and F(w) are calculated as given in cquations (A4) and
(13), the thermodynamic cycle energy Wi yields a value of —2893 kJ mol~!, which
is in even closer agreement with the theoretical value. It may be concluded that the
difference of 15% regarding the monopole crystal energies is reduced to 2% if dipole
corrections are made for both the theoretical and the Born-Haber crystal energy.
These developments are visvalized in figure 4, where the crystal energies are given



The crystal energy of pyrite 6237

as a function of the order of ¢lectrical moments used for the calculation. The result
strongly favours the assumption of static polarized S ions within the pyrite lattice.

The errors of the values calculated for u and W, are in the few per cent range
as they were for the experimental data used (bulk modulus, AKX = 3.4%; sulphur
dissociation energy, A D = 3%; heat of sulphur sublimation, AS(S) = 4%). B, and
B, depend greatly upon the choice of n, whereas the solution is stable for u and W,;,.
The van der Waals attraction and the (repulsive) phonon part of the crystal energy are
probably of the same magnitude, so that they cancel. It also should be remembered
that the hardness parameters for the iron-sulphur bond was approximated to be
€qual to the one of the sulphur—sulphur bond. Without this assumption there would
have been more unknowns than equations. Another approximating assumption was
that repulsion terms can be taken into account by adding only nearest-neighbour
interactions. In the alkali halides the anion-anion and cation—cation repulsions have
to be considered to reach an agreement between theoretical and experimental crystal
energy of less than 2% [14]. Further, the 1/r" law for the core—core repulsion was
substituted later by an exponential expression by Born and Mayer. Regarding all
these possible sources of error, the difference between W,, and Wi is astonishingly
small.

For the time being it may not be excluded that there are electric quadrupole
moments associated with the iron and sulphur jons, which may cause further terms in
the theoretical crystal energy. At least, the point symmetry of both crystallographic
sites allows for non-vanishing electric field gradients, which might excite quadrupoles
in the same way as the electric field caused a polarization. But if there is any third-
order interaction, it will probably not be very significant. As could have been seen,
the interaction energy is closely linked with the radial exponent on which it acts:
whereas the 1/r dependent monopole-monopole term was almost as strong as the
sum of the whole crystal energy, the interaction between point charges and dipoles,
following a 1/+? Jaw, made up only 10% of it. Any 1/+3 monopole—quadrupole term
will probably be in the few per cent range, as was the dipole~dipole energy. Also the
close agreement between theoretical and thermodynamic cycle energy indicates that
any further electrostatic order would contribute only little to the sum of energies.

Altogether, the extended ionic model, which regards ions in the pyrite lattice as
point charges and point dipoles, gave useful results. The good agreement between the
crystal energies due to theoretical and thermodynamic cycle considerations emphasizes
the usefulness of the newly introduced electrostatic lattice constants and supports the
assumption of a static electric dipole moment associated with the sulphur atoms in
pyrite. Their strength is almost twice as strong as the dipole moment of the water
molecule, which must have important consequences for the physical properties of the
material. There is no obvious reason why the considerations presented here should
not be applicable on other crystal Jattices with atoms on positions that are not centres
of inversion, e.g. other pyrite compounds, chalcopyrites, rutiles, perovskites, etc. To
solve the system of equations, the number of unknown dipole moments and repulsion
constants must equal the number of equations describing the crystal’s equilibrium and
compression.

7. Conclusions

It has been shown that the crystal energy of pyrite cannot be described with an ionic
mode] that accounts for electrical monopoles alone but leads to physically meaningless
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results. Only by introducing dipole moments, associated with the S atoms, it was
possible to calculate proper values of the electrostatic interaction, the core-core
repulsion and the crystal energy, the latter being in accordance with an extended
Born-Haber cycle. The dipole moment of the sulphur atom must be of importance
for the physical properties of the solid. The electrostatic lattice constants introduced
here, accounting for the generalization of the Madelung constant, have proven their
usefulness. They are pure geometric sums of crystal lattice points and it should
be possible to apply the presented concept to other structures with polarized atoms
occupying positions that are not centres of inversion.
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Appendix

Equations (11) and (12) are rewritten by inserting (10) as

6nD nB
= =2 1 2 e
E+2aL4+35°C+ PP + Tran-1 =0 (AD)
dE _dL , _,dC 4, 6B, d 1 B, d 1
— — —_— D . ——— — e —
du + *du uls du + (L+-“C)clu + a1V du d} + a1 du dF (A2)
_ _ én(n+ 1)B n(n+1)B SR atre

0 IGie 1 2 Z2E 70
2E+6pL +125°C 4+ e a1 o2 (A3)
where the abbreviations

=pujea E=aol +2af

7
L=(af.+208-260) C=-26

are used and the other constants have their usual meaning. Writing the dipole
moment in this dimensionless form, it is not affected by taking the derivatives with
tespect to e, whereas u derivatives have to be evaluated. The system of equations
can be solved for the unknowns p, B; and B,. Multiplying (Al) with (n + 1) and
subtracting it from (A3) yields a quadratic equation for 4 that is solved to give

—(2n—4)}L =+ {(2n—4)?L? —4C(3n - 9)[E(n — 1) + 9K a'me,/e?]}}/?
T 2C(3n—9) ’

By2=
(Ad)

In this form 7 is dependent only on the electrostatic lattice constants, the hardness
parameter n and a dimensionless form of the bulk modulus. Fortunately, one is able
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to solve for 7 only by a combination of (Al) and (A3), so the g derivative may be
evaluated from the quadratic equation for i to be

da _ p*C'(8rn-9)4+ aL/(4n—2) 4+ E'(n—1) )
du ” L(2n—4)+25C(3n - 9)

where primed constants indicate derivatives with respect to the sulphur positional
parameter w. By calculating djz/du, use was made of the fact that dK'/du =0, as
has been determined experimentally [15]. With the belp of

- I 1
d 1 - n{1 .;’»u) a1 _ 2\/5':1 (A6)
du d} dpt dudl = d3%
the other two unknowns are evaluated by isolating B, from (Al) to give
B, E+2pL 4+ 3p%C 6B,
dian-1 =T n "~ dran-i A7)

which inserted in (A2) results in

By _ gn+22V3(E+20L +33°C) — [E' + pL' + B2C" 4 (B)(L + 2£C)]
- %1

an-l 6d,n(1l — 3u) — 12+/3din

(A8y

where primed constants again indicate u derivatives. These are the solutions of the
equilibrium and compression modulus equations setting the hardness parameters of
the two sorts of atoms to be equal n = m.

The system of equations (Al1)-(A3) can be solved for x = ¢/ = 0, using the
three variables n, B, and B, as the new set of unknowns. Instead of (Ad) the new
equation for n then becomes

9K a're,
whereas the solutions of B, and B, remain the same as in (A7) and (AS8) with the
slight change that g = 0 is to be inserted. This is the solution for the crystal energy
when the dipole moment associated with the sulphur atoms in the lattice is denied.
Equation (A9) is usually obtained in the case of lattices with atoms occupying centres
of inversion exclusively, as in alkali halides [19]. The solution can be recognized to
be the mathematical limit of the two equivalent series p,u’ —0or L,C — 0.

References

{1] Sato K 1985 Prog Cryst. Growth Charact. 11 109

[2] Lowson R T 1982 Chem. Rev. 82 461

[3] Chatzitheodorou G, Fiechter 5, Kionenkamp R, Kunst M, Jaegermann W and Thibutsch H 1986
Mater: Res. Bull 21 1481

[4] Ennaoui A and Trbutsch H 1986 Solar Energy Mater 14 461

[5] Smestad G, Ennaoui A, Fiechter 5, Tributsch H, Hofmann W K and Birkholt M 1990 Selar Energy
Marer 20 149



6240

6]
|

18]

19]
(10]
(1]
{12]
{13]
t4

[151
(1€}

[17]
(18]

[19
[20]
[21]
{22)
(23]
[24]

M Birkholz

Bausch S, Sailer B, Keppner H, Willeke G and Bucher E 1990 Appl Phys. Lett 57 25

Birkholz M, Lichtenberger D, Hépfner C and Fiechter S 1992 Solar Encrgy Mater Solar Cells at
press

Birkholz M 1990 PRD Thesis FU Berin, p 17

Born M 1926 Problemns of Aromic Dynamics (Cambridge, MA: MIT Press) pp 168-70

Finklea § 1, Cathey L and Amma E L 1976 Acta Crystallogr A 32 529

Birkholz M, Fiechter 8, Hartmann A and Thbutsch M 1991 Phys, Rev. B 43 11926

Born M and Landé A 1918 Mrhandl Deur, Physik. Ges. 20 210

Wright N F and Butler W H 1990 Phys. Ren B 42 4219

Pauling L 1960 The Nature of the Chemical Bond (lthaca, NY: Cornell University Press) pp 509
and 538

Will G, Lauterjung J, Schmitz H and Hinze E 1984 Material Research Society Symp. Proc. vol 22
(Amsterdam: Elsevier) p 49

Computer programs for direct summation of the electrostatic lattice constants are available through
the author

Barrows G M 1980 Physical Chemistry (New York: McGraw-Hill) ch 14 and app XXI

Khan M A 1976 I Phys. C: Solid State Phys. 9 81

The *Madelung poientials’ mentioned by him are in agreement with the a™ values presented in
this work if it is assumed that a facter ¢; /2 has been omitted.

Asheroft N W and Mermin N D 1981 Solid Stare Physics (Tokyo: CBS) p 407

Berkowitz J and Chupka W A 1964 J Chem. Phys. 40 287

Emsley J 1990 The Elements (Oxford: Clarendon) p 94

Rosinger W, Grade M and Hirschwald W 1983 Ber Bunsenges. Phys. Chem. 87 536

Meyer B 1976 Chan. Rev 76 367

Radzig A A and Smirnov B M 1985 Reference Daia on Atoins, Molecuies and lons (Berlin: Springer)
p 131



