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Abstract. The electrostatic part of the internal energy of 
heteropolar crystals is largely assumed to be purely of the 
Coulomb or monopole type. Here, it is argued, ions in a 
crystal lattice may not only bear a net charge, but also 
higher electrostatic moments. This applies explicitly for 
dipole moments. Dipoles are assumed to occur only for 
ions on lattice sites where the point symmetry allows a 
non-vanishing crystal electric field to cause a polariza- 
tion. Infinite lattice sums that account for the electrostat- 
ic interaction between point charges and dipoles are 
given, with the Madelung constant being the first of them 
in a more general Taylor expansion. An expression for 
the binding energy of heteropolar solids is hereby pre- 
sented. The share due to induced dipoles is always nega- 
tive if dipole-dipole interactions are neglected, i.e. it in- 
creases the strength of crystal binding. The concept, 
which is developed for crystals of arbitrary symmetry is 
explained on the basis of the examples (i) sphalerite (ZnS), 
(ii) pyrite (FeS2), (iii) rutile (TiO;), and (iv) orthorhombic 
LazCuO4. 

PACS. 05.50.+q; 61.50.Lt 

I. Introduction 

The internal energy of compounds crystallizing in the 
rock-salt or sphalerite structure can be accounted for 
by the ionic model that likens the solid to a gigantic 
molecule. The atoms within the molecule are assumed 
to ionize and interact mainly via long-range Coulomb 
potentials. Regarding the latter, when the interaction of 
one ion with the whole molecule is summed, it is found 
to yield specific values for certain crystallographic struc- 
tures [1], which is well known as the Madelung constant. 
If repulsive forces between the electronic cores of neigh- 
boring ions are also included into the model, the internal 
energy of the solid can be computed. This figure is found 
to be in close agreement with an experimental value de- 

rived from the Born-Fajans-Haber thermodynamic cycle 
[2]. These early concepts of modern solid-state physics 
still play an important role in today's research: Made- 
lung potentials are used in band structure calculations 
[-3]. They are also linked to the elastic properties of the 
crystal as the bulk modulus [-4], whereas the Born-Fa- 
jans-Haber thermodynamic cycle, for example, is used 
to estimate disorder energies [5]. 

Because the Madelung constant exclusively accounts 
for the interaction between electric monopoles, it is evi- 
dent that for some solids the agreement between theoreti- 
cal and experimental crystal energy might be better if 
higher order moments were included in the calculations. 
However, this point is relevant only for ions on positions, 
where symmetry considerations permit higher order mo- 
ments. In rutile (TiO2) and pyrite (FeS2), which are inves- 
tigated for solar cell applications [6, 7], chalcogen ions 
occupy positions where crystal electrical fields may oc- 
cur, thereby causing the ions to become polarized. In 
NaC1 and ZnS, however, such fields cannot occur due 
to the point symmetry of the ion site (Oh and Td). In 
their case only the sum of the potentials of other point 
charges yields a non-zero result, i.e. the Madelung con- 
stant. Therefore, it was not surprising that the crystal 
energy of rock-salt and sphalerite type compounds 
agreed well with the value of the thermodynamic cycle 
when calculated by a point charge ansatz [2] - whereas 
this was not the case for rutile [8] and pyrite [9]. For 
FeS2, however, it was shown that when dipole contribu- 
tions are included for both the theoretical and experi- 
mental crystal energy, the difference becomes as small 
as 2% as compared with a deviation of 15% when only 
monopole interactions are added [9]. 

These results suggest the internal energy of heteropo- 
lar crystals can be fully accounted for if the electrostatic 
moments incorporated into the calculations are high en- 
ough. Alternatively, one might use a more general elec- 
trostatic model to describe binding energies in composite 
lattices instead of the usual ionic model. Such point mul- 
tipole concepts have already been formulated [10-14]. 
They have been used to predict electrical field gradients 
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measured by nuclear probes in some solids [-15, 16]. Be- 
cause of the inclusion of dipoles and even higher mo- 
ments, the theoretical results were in significantly better 
agreement with the experiment in these cases [17-21]. 
The importance of the approach has mainly been recog- 
nized by molecular physics, see [22, 23] and the refer- 
ences cited therein. However, most works were aimed 
at understanding the interaction between two or a small 
number of particles. Also for crystals composed of organ- 
ic molecules, the significance of dipole moments for the 
cohesion of the solid was recognized [24] and is inten- 
sively used nowadays [25]. Recently, the interaction be- 
tween adsorbed molecules on a crystal surface became 
a new field for the application of dipole theories [26]. 
It seems, however, that the question of induced dipoles 
in polar crystals has not gained as much attention as 
it deserves. 

This work will present the general formulas of the 
second-order electrostatic lattice sums for ionic sites of 
arbitrary symmetry. For some special cases third and 
ever higher order moments will be of interest. However, 
this work will concentrate on dipole moments, because 
they are the most important corrections to the widely 
used first-order theory, and because they account already 
for many interesting physical phenomena. The presented 
formulas may be applied to any crystallographic struc- 
ture. Much attention will be given to the point symmetry 
of the ionic sites, which determines the orientation of 
dipole moments and the number of independent compo- 
nents. The Born-Fajans-Haber thermodynamic cycle is 
reconsidered for crystals in which second-order moments 
may occur, and an expression for their binding energy 
will be given. The significance of ionic dipole moments 
for some physical properties of heteropolar crystals will 
be discussed in the second part of this work [27]. 

II. Electrostat ic  lattice sums 

The so-called crystal energy or lattice energy UL of a 
heteropolar solid is generally assumed to be composed 
of the electrostatic interaction Eel, the repulsion between 
core electrons Er, the van der Waals attraction E,dw 
and the energy due to thermal vibrations Et~ 

UL = E~1 + Er + Evdw + Et~ . ( i)  

Because the last two terms are small compared to the 
first ones, the balance between electrostatic interaction 
and core-core repulsion is determinant for most ionic 
crystals. For an overhelming number of investigations, 
the electrostatic part was assumed to be fully accounted 
for by the Coulomb interaction (some hundred examples 
are compiled in E28]), being dependent as 1/rik upon 
the distance between the i-th and k-th ion, r~k=r~--rk. 
However, in general the interaction of the atom's charge 
distribution with other ones is given by a Taylor expan- 
sion [29] of which the first two terms are 

q~ 45- (pi IF) (2) 

where qi and pf are the first and second electrical mo- 
ment, i.e. charge and dipole of the i-th atom and �9 and 
F being the potential and field at its site rf due to the 
other atoms. Therefore, second and perhaps even higher 
moments have to be considered to properly calculate 
the theoretical crystal energy. At least this approach 
should become important, whenever the crystal energy 
as estimated from the thermodynamic cycle deviates sig- 
nificantly from the theoretical one as calculated only 
with monopole interactions. If we restrict ourselves to 
the extension of Eel to second-order effects, the potentials 
and fields of monopoles and dipoles have to be inserted 
in (2). They are given by the infinite sums 

ql jr ~, (P l [ r i / )  , ,  ~ (3)  
qb(ri)= ~, 4g8oril ! l , i  47reoru l , l * i  

F(ri)= ~, qlri~- (Pllru) ru-r2tPl 
47Ceoral Jr ~ 4~CeorSl (4) 

I,l:[=i 1,14-i 

that have to be extended over all lattice points (index l). 
SI units are used throughout the text with t0 being the 
permittivity of free space. 

Concerning the dipole moments of the ions, some bas- 
ic assumptions will be made in the following. First, it 
is assumed, that a dipole moment is associated with an 
ion only if a net crystal electrical field F occurs at its 
lattice site. Second, the dipole p is induced by the electric 
field, and both vectors are coupled by the dipole polari- 
zability to, p = 4 ~ t0 ~cF. And third, the ionic polarizability 
is assumed to be a scalar quantity. The latter point is 
in contrast with some theories of dielectrics where it is 
found reliable to use a tensor polarizability to describe 
the macroscopic behaviour of anisotropic crystals. 
Fourth, as the ions are imagined to be point charges 
within the usual ionic model, the second-order moments 
will be assumed to be accounted for by point dipoles. 

It must be emphasized that non-vanishing electric 
fields F and dipole vectors p do not occur at any arbi- 
trary crystallographic position, but depend upon the 
point symmetry of the ionic site. For instance, when an 
ion is located at the intersection of three perpendicular 
mirror planes (point symmetry Ozh or mmm), it is impos- 
sible for the surrounding charges to cause a net electrical 
field. Because for every charge qk at rik there is another 
one of the same magnitude at - rik that causes the fields 
of both to cancel at ri, this also holds true for the fMd 
of dipoles, see (4). It is not the occurrence of the dipole 
alone, but also the number of its independent compo- 
nents that is determined by the symmetry of the lattice 
site. 

In general, a dipole vector may have three different 
components, and each would serve as a new internal 
degree of freedom for the energy of the crystal. There 
are, however, symmetry conditions that constrain the 
number of independent components. For instance, a n- 
fold rotation axis passing through the ion forces the di- 
pole to be oriented in this direction and to have only 
one component. A complete analysis E22, 30] leads to 
the compilation as presented in Table 1, where the 
number of independent dipole components is shown for 
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Table 1. Number of independent dipole components allowed for 
ions in a crystal lattice versus point group symmetry of their lattice 
site. For 22 of 32 point groups crystal electrical fields and dipole 
moments induced by them do not occur because symmetry forbids 
them. The table can also be interpreted to give the well-known 
categorization of crystal classes by their number of independent 
polar axes 

Point groups 

Sch6nfliel3 International number 
notation notation of allowed 

dipole 
components 

c1 t 3 
Cs(Clh ) m 2 
C 2 ,  C 3 ,  C 4 ,  C 6 2, 3, 4, 6 1 
C2v , C3v , C4v , C6v mm2, 3 m, 4 ram, 6 mm 1 
S2(Ci) , $4, S6(C3i ) i, 4, 3 0 
C2h, C3h, C4h, C6h 2/m, 6, 4/m, 6/m 0 
D2(V), D3, D4, D6 222, 32, 422, 622 0 
Dzh(Vh), Dah, D4h, D6h mrnm, 6m2, 4/mmm, 0 

6/mmm 
D2d(Va), D3d 742m, 3m 0 
Oh, O, Th, Te, T m3m, 432, m3, 7~3m, 23 0 

all 32 crystallographic point groups, as given in 
Sch6nfliel3 and international notation. It is evident, that 
it is the same table as for the number of polar axes 
of pyroelectric crystals (see [4], the discussion of this 
point is postponed to the second part of this work). It 
can be seen that, for more than half of all point groups, 
dipole moments are forbidden due to symmetry reasons. 
In most cases, when a net electric field occurs, the dipole 
has only one independent component.  For  point group 
Clh (or m) with one mirror plane as a symmetry element 
two independent vectors define this plane, whereas C1 
(or 1) allows for three components. The orientation of 
dipole vectors is visualized for the two examples of point 
group C4v (or 4ram) and Clh in Fig. 1. 

For  the calculation of the Madelung constant a 
charge q~=z~e is assigned to every sort of ion in the 
lattice, e.g. Zc~ = - 1  in NaC1. The choice of the charge's 

,~, C4v 
I 
I 

ID 

I 

c,h 4 1  

Z, / j ,  ,)~ 

Fig. 1. Schematic drawing of point group symmetry C4~ and Clh 
(Sch6nflieg notation). One dipole component Pz is allowed for the 
central atom in a C4~, coordination, which has to be directed along 
the axis of rotation. For Clh, however, there are two degrees of 
freedom for the dipole vector, py and p~, which must lie within 
the mirror plane 

magnitude is determined by the next rare gas or closed 
electron shell. However, it is not possible to specify a 
certain value a priori for the strength of the second mo- 
ment. Instead, the dipole's strength will have to be calcu- 
lated, which can he done with a system of equations 
to be given later. One must therefore evaluate the poten- 
tials and fields of all dipoles without knowing their 
strength, see the second term in (3) and (4). The problem 
can be bypassed by introducing dipole unit vectors n 
with p = p n .  The orientation of n has to be chosen in 
accordance with the point symmetry as discussed above. 

The unit vectors, are of the form (100), (110)/lf22, (111)/1/3 
etc. depending on whether the axis of rotation is parallel 
to a cell edge, along a face diagonal or a body diagonal. 
If there is more than one independent dipole component 
allowed, two or three unit vectors must be assigned to 
that ion. 

For  the set of ions in a crystallographic unit cell, 
it will be useful to first assign dipole unit vectors to 
the ions of the asymmetric unit. If their positions are 
abbreviated by ri, the other ions of the unit cell, on 
rl, are generated by symmetry operations, r'i = Sr i + t, that 
consist of a rotation S and a translation t. Their dipole 
vectors are oriented along n'i, which follows from the 
rotation n'~ = Sn~, whereas the translation does not apply 
o n  n i . 

The calculation of the electrostatic interaction of a 
heteropolar crystal proceeds as follows. Assuming that 
the unit cell contains N sorts of ions with charges q~, 
and M different dipole moments, pj. If there are Z formu- 
la units per unit cell, and if K~ and L~ are the site occu- 
pancies of the i-th ion and the j-th dipole, (2) may be 
rewritten as the electrostatic interaction energy per for- 
mula unit of the compound 

N 

"= j = l  
(5) 

with the factor i being introduced to avoid double sum- 
mation of energies. It should be noticed that indices i 
and j may numerate the ions within the unit cell in a 
totally different manner, depending on whether a dipole 
moment is associated with an ion and on the number 
of its independent components. 

In general, a crystal belonging to the tricline system 
has three different unit cell edges a, b, c and three differ- 
ent angles between them: c~=gz(b,c), /3 ---- ~ (e, a), 
7 = g (a, b). The volume of the unit cell V is that of the 
parallelepiped 

V=abc(1 - c o s  2 e - c o s  2 / 3 -  cos  2 7 

+ 2 cos e cos/~ cos  ]))1/2. (6) 

3 
The cube root of the volume w = ~ will be used in 
the following for the normalisation of distances Pik 
= rik/W. Dipole moments will be normalized, /~ =p/ew, 
with respect to w and the elementary charge e. It is useful 
to introduce the covariant metric tensor gx~, the compo- 
nents of which are the direct products of the unit cell 
vectors a, b and c 
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a 2 a b . c o s y  ac.cosfi~ 
gao= ba.cos7 b 2 bc.cosT] 

\ca.cosf l  cb-cos0: C 2 / 
(7) 

With its help, the inner product of two vectors - the 
contravariant components of which are given in fractions 
of a, b and c - is calculated, for instance for n and p, 
as follows 

3 
<pin> = ~. pzg~on~. (8) 

2,0=1 

Finally, one is in a position to formulate the electrostatic 
interaction up to second order in a three-dimensional 
crystal of general symmetry. With the above definitions 
(5) becomes 

E e l =  - -  O~r'{- 2 #J(Xf i Z zi j=l 

J ~+ - E ~- #~ {[3J E /~k (9) j= ,  , , / J  

The c~ and [3 terms are infinite lattice sums that yield 
definite values for every special crystallographic struc- 
ture. They will sometimes be named electrostatic lattice 
coefficients in the following, a terms account for the in- 
teraction of charges with potentials, whereas [3 coeffi- 
cients describe the interaction between dipoles and crys- 
tal electrical fields. The superscripts m and d specify 
whether the interaction is with monopoles or dipoles. 
eT' then is the familiar Madelung constant of the i-th 
ion. It has been mentioned that the actual values of di- 
pole strength #j cannot as easily assigned to the ions 
as can the charges q~. This causes ~e of the i-th ion to 
split into M terms, each accounting for the interaction 
of q~ with the potential of the dipoles of the j-th sort. 
M different ~fj then are obtained. The same holds true 
for the set of fie sums. 

The electrostatic interaction energy within the solid, 
Eel , scales in units of Eo = e2/4rCeo w = 2Ryd ao/w, which 
appears to be the "natural" energy unit of the system. 
Since Bohr's radius is roughly half an ~ngstrom, while 
w in most cases ranges from 4-10 ~, Eo will usually be 
of the order of approximately 2 eV. It should be remem- 
bered that # stands for the normalized dipole strength. 
After reinserting # - p / e w  into (9), the single terms are 
seen to be proportional to l/w, 1/w ~ and 1/w 3, so the 
exponents of each specific electrostatic interaction can 
be recognized (ram, rod, din, dd). The first electrostatic 
lattice sums for the Taylor expansion of E~ are explicitly 
as follows 

z ,  

l,l~i 1Oil 

~4.= (Pitlnt('J)) ,, Y 

[3'2 = X = 7  ( ,1.,'2t 

fi]k=(n, ~ 3(n'(k)lp")-PJ'-Pgzn'(k) I (10a-d) 
i, z.~ Pjz / 

with direct products to be taken in accordance with (8) 
and n~(k) serves as /-th unit vector of the k-th type of 
dipoles. Because fld coefficients act on the third power 
of i/w, it would perhaps be more adequate to incorpor- 
ate them into a theory that can account for the full third 
order of electrostatic interaction. As is the Madelung 
constant, all electrostatic lattice coefficients are pure geo- 
metrical sums of the crystal lattice that can be calculated 
when all structural parameters have been determined (in 
contrast to [-9] the definitions in (10a-d) have slightly 
been changed, i.e. the factor 1 is missing within the sums, 
and zi has been deleted in ~" and cd). 

As has been mentioned, this work is concerned with 
crystals having N different types of ions with charges 
ezj (j = 1, ..., N). It can be shown that a decomposition 
of Madelung's constant into single parts, each caused 
by a different ion 

N 1 
o:m=i= ~, ZJl~iPi,(j)--,, ~ z jAi j  A,aq=OVij, (11) 

j=l , j=l 

is impossible, because the partial sums diverge. Only by 
adding the charges weighted by the inverse distance 1/p 
in the "right" order, a convergent sum is obtained. 
Mathematically speaking, this is caused by the diver- 
gence of the harmonic sum. However, for the tim sums 
according to formula (10c), the charges are multiplied 
by the inverse square of the distance lip 2 before being 
added. One may ask whether a separation into sums 
over different ions is possible. The answer to this ques- 
tion is that such a decomposition can be obtained, and 
it reads like 

[37=- ~ Kizic~j (12) 
i=~ Lj  

where Lj and Ki describe the frequencies of the j-dipole 
and the /-charge in the unit cell. The physical meaning 
of this relation simply is that the interaction of a set 
of charges with the potential of dipoles equals the inter- 
action of dipoles with the field of charges. It was first 
determined by Rudert [31] to hold for [3" of the sulfur 
ions in FeS2. Eq. (12) will help considerably in simplify- 
ing some of the forthcoming expressions. 

The strengths of the dipoles may be regarded as a 
degree of freedom of the system. They can be determined 
with the help of the fl type sums. Assmning p=4zC~o ~:F, 
with x being the dipole polarizability of the ion, there 
are two ways to calculate the set of pj. First, it may 
be assumed, that dipole moments are mainly induced 
by the fields of monopoles F m. These moments will be 
abbreviated by qSj in their normalized form Pie w and 
it is obtained 

~j m CJ=V & " (13) 

Alternatively, one may assume that moreover the di- 
poles' electric field F d will modify dipole moments recur- 



sively. This set of dipoles is symbolised by #j to distin- 
guish them from the above set. This results in 

4neo tc 2 ~d'~ _ h2j m _[_ d 
#J= we 6m+ #kfljk , (14) 

k = l  1 

which is solved to yield a linear system of equations 
for the set of the #j 

- -  #k = /~j ,  
k =  i ~) jk  tgj  

(15a) 

with 6jk being Kronecker's symbol. The left-hand side 
of (15a) is seen to be the product of a matrix Big and 
the vector #k. If both sides are multiplied by the inverse 
of Bjk, the set of equations 

M 

Z B&* fl7 Bik=aJk (15b) 
j :  1 ls  

is obtained. This becomes equal to (13) for a vanishing 
dipole-dipole interaction, or fl~k = 0. The dipole strength 
then is sufficiently well approximated by the set of the 
~bj. By using (12) (15b) is reformulated to become 

# k  = - -  - -  Z i  O~ij B k j  �9 
j = l  i=1 Lj 

(16) 

This formula shows the dipole strengths to depend on 
the ionic polarisabilites ~c~, on the distribution of charges 
over the different lattice sites and - via cd and fld sums 
- on the geometry of the lattice. While the dipoles scale 
lineary with the charges z~ the dependency on the set 
of ~cj is more complicated, because the latter enter via 
a rational fraction of specific polarisabilities ~:j/V 
through the matrix Bki- Only for negligible dipole-dipole 
interaction the strength of the dipoles becomes a linear 
function of the polarizabilities. 

So far, the crystal has been assumed to be static and 
the ions or dipoles were imagined to reside on fixed 
positions. However, at finite temperatures, the lattice 
constitutents will move with respect to each other in 
an irregular manner due to thermal vibrations. The di- 
pole strength of an ion p at a dipole-allowed lattice site 
will then become a time-dependent function, p(t), as is 
its position. We will assume, however, that its mean 
value, /5, is not equal zero. It is this special /~ that is 
accounted for by the presented formulas. 

Finally, all terms of (9) have been determined. The 
electrostatic interaction in a heteropolar crystal can be 
calculated to second order, if the structural parameters 
and dipole polarizabilities of the ions are known. 

HI. The Born-Fajans-Haber thermodynamic cycle 
and the binding energy of crystals 

The crystal energy or lattice energy UL as given in (1) 
should be released, if the gaseous ions are moved from 
infinity to form the crystal. According to the Born-Fa- 
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Fig. 2. Born-Fajans-Haber thermodynamic cycle of a model com- 
pound AB 2 with the usual process energies: negative heat of forma- 
tion, - H  I, sublimation, Sub, dissociation, D, ionization, I, electron 
affinity, A, and the lattice energy, U L. B ions are assumed to be 
more electronegative and polarizable than A ions, and they occupy 
crystallographic positions where second-order moments are in- 
duced. It is argued that a new step to polarize the B ions has 
to be inserted within the cycle to account for the dipole moments 
in the lattice (polarization work Wp). It occurs after the acceptance 
of electrons by B atoms. A new lattice energy UL = WSFH-- Wp results 
instead of the usual Born-Fajans-Haber energy WBF n 

jans-Haber thermodynamic cycle, the theoretically calcu- 
lated lattice energy UL, th may be compared with an ex- 
perimentally derived quantity, see Fig. 2. This cycle of 
chemical and physical reactions starts by converting the 
crystal to its elements, which is accounted for by the 
negative heat of formation ( - H I ) .  The elements are then 
assumed to be sublimized to the gas phase (Sub), disso- 
ciated (D) and ionizated to their proper charges (ionzia- 
tion potential I and negative electron affinity -A) .  The 
sequence of processes becomes a closed cycle if the ions 
are now brought together to form a solid. The lattice 
energy according to Born-Fajans-Haber becomes 
UBVH = H f - -  Sub - D - I + A. If the theoretical ansatz ac- 
counts in the right manner for the lattice energy, UL,,1 
and Usvn should be equal. 

The introduction of higher electrostatic moments has 
two important consequences. The first one was outlined 
in the foregoing section by inserting second-order energy 
terms within (9). This causes the theoretical lattice energy 
Ur, th to become modified. The second consequence con- 
cerns the thermodynamic cycle itself. The Born-Fajans- 
Haber cycle adds the energy used to ionizate the atoms 
(1 and A), so that they bear a first-order electrostatic 
moment. It was argued that dipole moments should be 
accounted for if the ions are situated on dipole-allowed 
lattice sites. Consequently, the energy used to polarize 
the ions should also enter the thermodynamic cycle. It, 
therefore, seems to be reasonable, to include a term Wp 
for the polarization work within the cycle. Its strength 
follows from the fact that the energy to induce a dipole 
p by an electric field F is as large as pF/2 ,  which can 
be expressed for one formula unit of the compound as 

M g .  

Wp = j--~l 2 3  < pJ [ F (r j)) (17) 

This step would occur within the cycle after the ioniza- 
tion of the atoms, as is shown in Fig. 2. Instead of UBFH 
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another lattice energy UL = UBFH-- Wp must be evaluated. 
Because UBFn is less than zero, and because Wp is posi- 
tive, the new lattice energy is apparently more negative 
than UBw. Therefore, it is concluded that the Born-Fa- 
jans-Haber energy underestimates the lattice energy of 
crystals with ions on dipole-allowed positions. 

It is interesting to realize, how the sum for the elec- 
trostatic interaction and the work of polarization looks 
like, if the relations are inserted as derived above. From 
(5), (9) and (17) one obtains 

E e l + W p = ~  - ~ zi m I~jO~ . 
i = 1  

(18) 

The polarization work and the energy due to the interac- 
tion of dipoles with electrical fields have cancelled each 
other. However, the dipoles remain included due to the 
interaction of their electric potentials with monopoles. 
If the decomposition of the tim coefficient according to 
(12) is inserted recursively, 

N M 

(19) 

one will find that the double sum of cd coefficients re- 
duces to a single one and we are left with two separate 
sums, one over all monopoles and the second over all 
dipoles. Again, the dipole-dipole interaction may be as- 
sumed to be small, fie__. 0 or equivalently #~--+ ~bj, and 
the expression finally reads like 

Ee1+ WP~- i~=1 ~- zi~ - j~=l ' 2~cj ]" (20) 

The second sum has now taken the usual form of the 
energy of dipoles as indced in an external electrical field. 
Its significance has been fully realized in molecular sci- 
ence [23], where it is named induction energy or polar- 
ization energy, Epo 1. 

One is now in the position to obtain an expression 
for the binding energy EB of a heteropolar solid, which 
is correct up to second-order electrostatics. As usual, 
EB is assumed to be the difference between the energies 
of bound atoms and non-interacting particles. For one 
formula unit of the solid, EB is seen from Fig. 2 to be 
the sum of all ionization energies I, electron affinities 
A, polarization work Wp plus the crystal energy UL, 
which yields with the help of (1), (20) and (13) 

E B ~ - ~ ( l ~ - A , + ~ z i o ~  ') 
g = l  

E 0 ~ Lj ~cj 
( y - ) ~ + e , + e ~ w + e , ~ .  (21) 

2 /-" Zw---* i 
j = t  

The binding energy due to dipoles as induced by the 
crystal electric fields can be seen to be always negative 
if dipole-dipole interactions may be neglected, i.e. they 
increase the crystal binding. Moreover, the equation may 
also provide the binding energy EB,~ for the i-th sort 

of ions in the crystal, because all terms can be attributed 
to a certain ion. This may be of importance when com- 
paring the binding energy of the same sort of ion in 
different solids or the binding energy of different ions 
in the same solid. 

It can also be seen that EB depends greatly upon 
the choice of zi that are assigned to the ions on the 
lattice. The z~ may even be regarded as free parameters 
of the system, the minimum energy of which is deter- 
mined by their proper choice according to 

~ER =0  (22) 
OZi [~K~z~=O 

with the condition describing the charge neutrality of 
the crystal. This approach offers a quantitative solution 
to the problem of assigning charges zi to the ions by 
minimizing the system's energy. Instead of arguing on 
the basis of electron configurations of noble gases, (22) 
provides a quantitative recipe to determine a reliable 
choice. Because only discrete values are allowed for the 
set of z~, this equation will lead to a comparison of differ- 
ent models of charge assignments. This will be explained 
in example one in the following section. 

I V .  E x a m p l e s  

I. Cubic ZnS 

Sphalerite type structure. Space group Ta 2, components 
of the metric tensor g~v=a26a,, unit length 
w= a = 5.42 ~, formula units in the (non-primitive) unit 
cell Z = 4 ,  sorts of ions N=2 .  The point symmetry of 
the ion's site is Td. According to Table 1 the crystal elec- 
tric field vanishes at ionic sites of such symmetry, and 
no dipole moment can be induced. Therefore, it applies 
for the number of dipoles in the unit cell, M = 0. The 
dipole unit vectors ni must be set to zero, causing all 
second-order electrostatic lattice sums to vanish, tim 
= fld = 0. Only the potential of other point charges yields 
a finite value that is the same for both ions. This value 
is the well-known Madelung constant of the ZnS-struc- 

. . . . .  3.7829 (normally a m is given accord- ture: ~Zn - -  - -  ~ZS - -  

ing to the distance to the nearest neighbour, which is 
obtained by multiplying the value by ]/~/4). The electro- 
static interaction until to second-order effects in sphaler- 
ite-type compounds is therefore fully accounted for by 
the first sum of (9). (22) can be applied to find the proper 
charges of the ions. Two different models will be investi- 
gated with E~ and E~ accounting for their different bind- 
ing energies. The ions in model (i) are assumed to be 
ionizated onefold (Zn+S -) and twofold in model (ii) 
Zn 2 + S 2-. There is good reason to suppose that energies 
due to repulsion, thermal vibrations and van der Waals 
interaction are equal in both models, so the difference 
in binding energies A EB is solely due to A Eel - -  AI + A A. 
If first and second ionisation energies of Zn (I1 = 9.39, 
12 = 17.96 eV according to [--32]) and electron affinities 
of sulphur (A1=2.07, A2 = - 5 . 5 1 e V ,  [--33]) are used, 

2 1 Es--E8 is found to be 3Eoe'n/2+I2-A2 = -6.75 eV. Si- 
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milary, the difference E2-E  3 is found to be less than 
zero. These results predict that the binding energy of 
the Zn2+S2--configuration will be smaller than that of 
one- and threefold charged ions. This substantiates this 
generally used assignment of formal valencies. 

2. Cubic FeS2 

Pyrite-type structure. Space group Th 6. The ions, their 
charges and point symmetries are described by the triples. 
(Fe, +2, C3i ) and (S, - 1 ,  C 3 ) .  gz~=aZ~,  
w = a = 5.41870 (6) ~ [34], Z = 4, N = 2. Dipole moments 
are only allowed for sulfur ions, M = I. Their unit vectors 
are oriented along the body diagonals of the cube and 
they are obtained from the set of all combinations of 

(_+1, _+1, _+1)/.1~ (see Fig. 3). Two Madelung coeffi- 
cients and two ed sums occur, each for one type of ion. 
/?" and/3~ differ from zero only for sulfur ions, because 
electrical fields vanish at the Fe site. The electrostatic 
interaction between the ions is therefore characterized 
by five different electrostatic lattice sums. Their values 
are given together with S-dipole moment and Eel - 
in I-9]. The difference between theoretical and experimen- 
tal lattice energy UL, was found to be as large as 15% 
when dipole contributions were not taken into account. 
It decreased to 2%, if dipole moments were included 
into the electrostatic interaction and within the thermo- 
dynamic cycle. The effect of dipole-dipole interaction was 
found to contribute only 14% of the total dipole strength 
being mainly induced by the point charges of the crystal 
lattice. 

3. Tetragonal r i o  2 

Rutile-type structure. Space group D,,h.14 (Ti, +4, D2h), 
( O , - 2 ,  C2~), gl~=aZfa~, g2v=a2~z~, g3v=cZ~3~, w 

3 2 
= ] / ~ .  Z = 2, N =  2. Dipole vectors are forbidden for 
Ti ions and allowed for O ions, M = 1, with unit vectors 
directed along the face diagonal of the basal plane, i.e. 

combinations of (+ 1, _+ 1, 0)/1/2. The number of first 
and second-order electrostatic lattice coefficients is the 
same as in pyrite. The significance of dipole lattice sums 
for the calculation of the dielectric constant had already 
been recognized by Parker [35], but she rejected the 
occurrence of crystal field induced dipoles. Madelung 
constants were presented for varying c/a ratios and oxy- 
gen site positional parameters by Baur [8]. ~,  //m and 
fld sums can be extracted from Bertaut [14] and 
Kingsbury [36]. The latter also gave a solution accord- 
ing to (14) for p(O) in TiO2. 

4. Orthorhombic La2Cu04 

K2NiO4-type structure [37]. Space group D2nas. (Cu, 
+2, C2h), (La, +3, Can), (O1, - 2 ,  C2), (02, - 2 ,  Can), 

glv=a2~lv, ga~=b262~, g3v~-C2(~3v. W=3I~bc. Z=4.  

O, �9 0 

o 

o *. *o 
Fig. 3. Projection of the crystallographic unit cell of the cubic pyrite 
structure. Iron atoms build up an FCC sublattice and are indicated 
at the heights 0, 1/2 and 1 by small white and black circles. The 
sulfur atoms are differently shaded according to their different 
heights. The arrows indicate the dipole vectors that are oriented 
along the body diagonals of the cube 

Dipole moments are forbidden for Cu-ions, but allowed 
for all others. Unit vectors for O1 ions have one compo- 
nent. Because of the Cab symmetry there arise two inde- 
pendent dipole moments for both the 02 site and the 
La site, respectively. One is directed along the b-axis 
and the other along the c-axis. It seems that this point 
has not been realized in the literature on the compound. 
The electrostatic interaction in the crystal is due to four 
charges and five second-order moments, N = 4 ,  M=5 .  
Therefore, 49 different coefficients must be evaluated in 
accordance with second-order theory: 4e m, 4 x 5cd and 
5 x 5/3 e. Their values and the resulting dipole strengths 
for the La, O1 and 02  ions are given for T ~  15 K in 
[38]. It is well known that La2CuO4 becomes supercon- 
ducting when La ions are substituted by Ba or Sr ions 
[39, 40]. To find the distribution of charges and the va- 
lencies of the ions by applying (22), the first and second- 
order electrostatic lattice sums have been calculated for 
La2_xSrxCuO4 in [38]. 

V. Conclusions 

Symmetry conditions were presented for the occurrence 
of dipole moments induced by crystal fields, and geomet- 
ric lattice sums that account for second-order electrostat- 
ic effects in crystals were given [41]. An expression for 
the binding energy that can be separated into the individ- 
ual atomic fractions that consitute the solid was also 
presented. Precise structural information on the crystal 
under investigation is neccessary for the application of 
the concept. The most important restriction is the lack 
of precision of available data on electron affinities and 
polarizabilities. The second electron affinity of many ele- 
ments, for instance, can be given only with poor precision 
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in the range  of 10%, because  these electronic conf igura-  
t ions are uns table  if no t  subjected to a crystal  field. In  
the case of  ionic polarizabil i t ies,  however ,  accura te  meth-  
ods that  m a k e  use of  the local densi ty  a p p r o x i m a t i o n  
(LDA) are now being developed,  see 1-42] for a recent  
review. 

The  concept  can na tura l ly  be extended for even high- 
e r -order  electrostat ic  theory.  F o r  instance,  electric field 
gradients  of  the ions tha t  are a l lowed at special lattice 
sites m a y  be a s sumed  to induce quad rupo le  momen t s ,  
just  as the electrical field excites the dipole m o m e n t .  This  
a p p r o a c h  will lead to fur ther  electrostat ic  lattice con-  
stants  of  the y-type, indicat ing tha t  they account  for  field 
gradients,  and  to new superscr ipts  q symbol is ing  third 
order  electrical m o m e n t s  (eq, flq, 7% 7 e, 7 q etc.). The  mos t  
relevant  appl ica t ion  of y- type coefficients is in the predic-  
t ion of  electric field gradients  at certain lattice sites. They  
will p r o b a b l y  be of m i n o r  impor t ance  for  the crystal  
energy,  because  the s t rength  of  e lectrostat ic  in terac t ion  
energy is coupled  to the radial  exponen t  by which it 
acts. Whereas  the t / r -dependen t  M a d e l u n g  te rm a lmos t  
equals  the crystal  energy, dipole cont r ibu t ions  of  
1/ r2-dependency were found  to account  for only  5 to 
10%. Hence,  higher  mul t ipoles  will con t r ibu te  even less. 
In  order  to clarify the range  of validi ty of  the po in t  mul t i -  
pole model ,  fur ther  invest igat ions of  m o r e  he t e ropo la r  
crystals  under  inclusion of  higher e lectrostat ic  m o m e n t s  
will be needed. 

I would like to thank R. Rudert, Max-Planck-Institut ftir Kolloid- 
und Grenzfl/ichenforschung, D. Haase, Institut ffir Physikalische 
und Theoretische Chemie, I. Peschel, Institut ffir Theorie der kon- 
densierten Materie, all in Berlin, and M. Schmitz, hydronic GmbH, 
Bitburg, for very helpful discussions and their support of this work. 

References 

1. Madelung, E.: Phys. ZS. XlX, 524 (1918) 
2. Born, M.: Problems of atomic dynamics, p. 168-170. Cam- 

bridge: MIT Press 1926 
3. Khan, M.A.: J. Phys. C9, 81 (1976) 
4. Ashcroft, N.W., Mermin, N.D.: Solid State Physics, p. 407, 555. 

Tokyo: CBS Publishing Japan 1981 
5. Kr6ger, F.A.: The chemistry of imperfect crystals, p. 249. Am- 

sterdam: North-Holland 1974 
6. O'Regan, B., Gr/itzel, M.: Nature 353, 737 (1991) 

7. Ennaoui, A., Fiechter, S., Pettenkofer, Ch., Alonso-Vante, N., 
Bilker, K., Bronold, M., H6pfner, Ch., Tributsch, H.: Sol. Ener- 
gy Mater. Sol. Cells 29, 289 (1993) 

8. Baur, W.H.: Acta Crystallogr. 14, 209 (1961) 
9. Birkholz, M.: J. Phys.: Condens. Matter 4, 6227 (1992) 

10. Kanamori, J., Moriya, T., Motizuki, K., Nagamiya, T.: J. Phys. 
Soc. Jap. 10, 93 (1955) 

11. Nijboer, B.R.A., de Wette, F.W.: Physica 23, 309 (1957) 
12. de Wette, F.W., Nijboer, B.R.A. : Physica 24, 1105 (1958) 
13. de Wette, F.W.: Physica 25, 1225 (1959) 
14. Bertaut, E.F.: J. Phys. (Paris) 39, 1331 (1978) 
15. de Wette, F.W.: Phys. Rev. 123, 103 (1961) 
16. Taylor, T.T.: Phys. Rev. 127, 120 (1962) 
17. Hewitt, R.R., Taylor, T.T.: Phys. Rev. 125, 524 (1962) 
18. Taylor, T.T., Das, T.P.: Phys. Rev. 133, A1327 (1964) 
19. Sharma, R.R., Das, T.P.: J. Chem. Phys. 41, 3581 (1964) 
20. Artmann, J.O.: Phys. Rev. 143, 541 (1966) 
21. Artmann, J.O.: Phys. Rev. 173, 337 (1968) 
22. Buckingham, A.D.: In: Intermolecular Forces, p. 107. Hirsch- 

felder, J.O. (ed.). New York: Interscience 1967 
23. Stone, A.J., Price, S.L.: J. Phys. Chem. 92, 3325 (1988) 
24. Kitaigorodski, A.I.: Molekillkristalle. Berlin: Akademie-Verlag 

1979 
25. Metzger, R.M. (ed.): Crystal cohesion and conformational ener- 

gies. Berlin: Springer 1981 
26. Rozenbaum, V.M.: JETP Lett. 59, 173 (1994) 
27. Birkholz, M.: Z. Phys. B 96, 333 (1995) 
28. Jenkins, H.D.B.: In: CRC Handbook of chemistry and physics, 

p. D 100. Weast, R.C. (ed.). Boca Raton: CRC Press 1986 
29. Jackson, J.D.: Classical electrodynamics, Chap. 4. New York: 

Wiley 1975 
30. Bhagavantam, S., Suryanarayana, D.: Acta Crystallogr. 2, 21 

{1949) 
31. Rudert, R.: (Personal communication 1992) 
32. Radzig, A.A., Smirnov, B.M.: Reference data on atoms, mole- 

cules and ions. Berlin: Springer 1985 
33. Cotton, F.A., Wilkinson, G.: Advanced inorganic chemistry, 

p. 58. New York: Wiley 1972 
34. Birkholz, M., Fiechter, S., Hartmann, A., Tributsch, H.: Phys. 

Rev. B43, 11926 (1991) 
35. Parker, R.A.: Phys. Rev. 124, 1713 (1961) 
36. Kingsbury, P.I. : Acta Crystallogr. A 24, 578 (1968) 
37. Jorgensen, J.D., Dabrowski, B., Shiyou Pei, Hinks, D.G., Soder- 

holm, L., Morosin, B., Schirber, J.E., Venturini, E.L., Ginley, 
D.S.: Phys. Rev. B38, 11337 (1988) 

38. Birkholz, M., Rudert, R.: Z. Phys. B (in preparation) 
39. Bednorz, J.G., Miiller, K.A.: Z. Phys. B64, 189 (1986) 
40. Cava, R.J., Hewat, A.W., Hewat, E.A., Batlogg, B., Marezio, 

M., Rabe, K.M., Krajewski, J.J., Peck, W.F., Rupp, L.W. : Phys. 
C 165, 419 (1990) 

41. Rudert, R., Birkholz, M.: ELC - A Computer Program for 
the Calculation of Electrostatic Lattice Coefficients 1994 

42. Mahan, G.D., Subbaswamy, K.R.: Local Density Theory of 
Polarizability. New York: Plenum Press 1990 


