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Abstract. The significance of dipole moments induced by 
crystal fields in heteropolar crystals is discussed with re- 
spect to some aspects of solid state physics. Experimental 
results from structural analyses that provide data on in- 
duced dipoles are summarized. The concept of ionic radii 
is reconsidered, and a new tabulation scheme is proposed 
in terms of deformed charge distributions. It is shown 
that spontaneous polarization as well as the pyro- and 
piezoelectric coefficients are not independent sets of crys- 
tallographic constants, but are accounted for by the 
structural parameters, the ionic polarizabilities and the 
elastic constants. The dipole concept is extended to 
statistically induced or random dipoles. They can ac- 
count for an important part of the binding energy of 
substitutionally disordered and non-stoichiometric com- 
pounds and, therefore, are concluded to stabilize disorder 
in solids. 

PACS: 61.50.Lt; 77.60.+v; 77.70+a 

Introduction 

In part I of this work [1], in the following referred to 
as I, second-order electrostatic moments or dipoles were 
assigned to ions that reside on positions of certain sym- 
metry in heteropolar crystals. Formulas for their calcula- 
tion that makes use of the ions' polarizabilities and infi- 
nite lattice sums were given. The latter may be regarded 
as higher order Madelung constants. The significance 
of the dipole concept for the binding energy ER was con- 
sidered in I, where it was shown that a surplus addend 
is introduced in EB, called polarization energy Ep. If 
dipole-dipole interactions become small enough to be 
neglected, Ep will always strengthen the crystal binding. 

Important applications of the dipole model in con- 
densed matter physics arose in connection with investi- 
gations of the dielectric function. For crystals with ions 
on cubic lattice sites, the Clausius-Mossotti relation is 

obtained for the limit of infinite frequencies, as was al- 
ready found in the last century, and which was later 
explained by a theory of Lorentz that combined micro- 
scopic and macroscopic elements. In the following, im- 
portant supplements for liquids with polarized and po- 
larizable molecules were established by Debeye, Onsager 
and others, an extensive description of this path of dipole 
research is given in [2]. For crystals, Lorentz's approach 
was reformulated by Ewald and Born on a complete 
microscopic basis [3]. Only recently, an investigation 
of the magnetic birefringence in rutile-type antiferromag- 
nets [4] concluded that '" the classical point-dipole mod- 
el, upon which the Ewald-Born theory is based, is consid- 
erably more powerful than is commonly assumed". 

However, these applications of dipole models differ 
significantly from those presented in I in as much as 
they deal with dipoles that are induced by external fields. 
However, in I dipoles were considered that are caused 
by internal or crystal electric fields. Also, many investiga- 
tions have been carried out with regard to this dipole 
conception. Part I citied some works that aimed at calcu- 
lating the electrical field gradient at the nucleus of ions, 
which also included dipole terms. In addition, the differ- 
ent phases of ferroelectrics have been an important field 
for dipole models. In order to understand their cross 
section in neutron scattering, for instance, elastic dipole 
models that imagine the dipoles to be associated with 
certain ionic groups within the unit cell have been devel- 
oped [5, 6]. 

It is again emphasized that the model as discussed 
in this work regards the dipoles to be localized at the 
ions themselves. They are assumed to be coupled to the 
ions' positions as is the crystal electrical field that induces 
them. Consequently, this will cause the moments to van- 
ish as the solid melts or decomposes. Whereas molecules 
with permanent dipole moments (e.g. water) remain po- 
larized during the transition from the solid to the liquid 
or the gase phase, this does not apply to the ionic dipoles 
discussed here. In this part of the work, further aspects 
of crystal-field induced dipoles will be considered that 
are relevant to some features of crystal physics. 
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Distribution of chemical elements 
over different lattice sites 

Which ions can be found at positions allowing for dipole 
moments in the crystal? To answer this question it is 
recalled that the part of the binding energy due to the 
dipoles, the polarization energy Ep, can be formulated 
in terms of second-order Madelung constants ~d as 

E o ~ K i  d E~=~- 7 z~j~ij. (1) 
i = l j = l  

Ki stands for the frequency of i.th ions with a charge 
of qi = e zl. The crystallographic unit cell contains N sorts 
of ions, M different dipoles and Z formula units of the 
compound. The dipole strengths pj are given in their 
normalised form, #~=pj/ew, with w being the cube root 
of the cell's volume V. Eo is an energy unit, Eo=2Ryd 
ao/w, and ao is Bohr's radius, ed accounts for an inifinite 
lattice sum that describes the potential of all the j.th 
dipoles acting at the i.th ionic site, see (10b) in I for 
its definition. 

The strength of the dipoles #j was shown to follow 
from the polarizabilities ~:j of the ions and lattice sums 
of the tim_ and rid-type, which account for crystal electric 
fields of monopoles and dipoles. The set of the c~ m, ~d, 
tim and fld will sometimes be named electrostatic lat- 
tice coefficients in the following. In many cases, the recur- 
sive induction of dipole strength by other dipoles is small 
compared with the induction by charges. The fld coeffi- 
cients may then assumed to become zero. In this approxi- 
mation the dipole strength, now symbolized by ~b; to 
distinguish them from/~j, is proportional to the fl" coeffi- 
cients and the polarizability: q~j= ~cfl~)"/V. Together with 
a relation between ~d and tim coeff• that describes 
the equality of charge-dipole and dipole-monopole inter- 
action (see (12) of I), (1) is reformulated 

u L Eo V ~j ~:; tn.~ 2 
Ep = 2 ~1 Z V '"J ' (2) 

j =  

where Lj is the frequency of the j.th dipoles within the 
unit cell. It can be seen from eq. (2) that the system 
has two possibilities for minimizing its energy with re- 
Spect to the dipoles. First, ions may be shifted to dipole- 
allowed positions where non-vanishing fl" coefficients 
occur. This is not the case for all 32 point symmetries 
that describe crystallographic lattice sites, but only for 
a subset of ten of them, see the table in I. Second, the 
binding energy is more enhanced the more polarizable 
the ions residing on dipole-allowed positions. 

In the periodic system of elements the atomic polari- 
zability increases within a period from right to left, and 
within a group from top to bottom [7]. For heteropolar 
crystals, however, one has to consider the polarizabilities 
of the ions and the distribution of charges among them. 
This latter point is governed by differences in electrone- 
gativity. Since the elements on the right are more elec- 
tronegative than those on the left, the former will bear 
the negative charges. These surplus electrons cause the 
polarizability to increase, whereas the polarizability of 
the counter-ions is reduced by the depletion of electrons. 

r ................................ ~ e .  

Fig. 1. Rutile-type structure (C4). White spheres symbolize oxygen 
ions, while grey spheres stand for titanium. Arrows should indicate 
dipole unit vectors 

It is therefore the interplay between polarizability and 
electronegativity that determines the distribution of ions 
over different lattice sites. Consequently, one would ex- 
pect the group V, VI and VII elements and the metals 
with large inner electron shells (i.e. lanthanides and actin- 
ides) to reside at positions, where crystal electrical fields 
may occur. Equation (2) provides the quantitative basis 
for that rule. The prediction is in agreement with many 
investigation done so far and with an inspection of crys- 
tal structures of binary compounds [8], where the more 
polarizable ion is always found to be situated on a di- 
pole-allowed lattice site. Fig. 1 shows the rutile-type 
structure as a typical example in which dipole moments 
are induced at the oxygen lattice site. 

Evidence for crystal field induced dipoles 
from diffraction experiments 

There are two possibilities, by which charge distributions 
of ions may reveal a second-order electrical moment 
within the appropriate length scales of diffraction proce- 
dures. First, a displacement of the centroid of the nega- 
tive charge distribution and the nucleus may be ob- 
served. Second, the square of the electronic wave func- 
tion, which may be measured directly, is found to deviate 
from spherical symmetry. Diffraction experiments have 
given evidence for both phenomena in the case of polar- 
izable ions on relevant lattice sites. 

Before giving examples for the first effect, an upper 
limit for the spatial separation of the nucleus and the 
centroid of the electron cloud of an ionic dipole should 
be estimated. One may assume that the dipole is com- 
posed of two point charges, P=(qN+qe) x A, SO the 
separation distance d can be estimated if p is known. 
This was done for the case of the oxygen ion [-9] in 
TiO2. Inserting q N - + 8 e  and q e = - 1 0 e  yields 
A = 0.08 ~, which would be easy to detect in X-ray and 
neutron diffraction experiments that measure the center 



Table 1. Structural parameters of some crystalline compounds in which dipole moments 
may occur on certain lattice sites. The positional parameters of the polarizable ions can 
be seen to differ according to the method by which they were determined. Whereas X- 
and y-ray diffraction (XRD and GRD) reveal the centroid of the electron cloud, the neutron 
time-of-flight (N-TOF) method measures the position of the nucleus. The differences on 
an absolute scale are obtained by multiplying the figures with ] / ~  and ]/2a for pyrite- 
and rutile-structures, respectively. The differences are very small but statistically significant 

Compound Structure ,  Positional S i te  Measured  Method Ref. 
Cell Edges  Paramter Symm. Value 

SiP2 pyrite-type x(P)=y(P) C 3 0.39065(2) XRD [10] 
a=b=c- =z(P) 0.39075(9) N-TOF [10] 
5.707 

MnF z rutile-type x(F)=y(F) C2v 0.30523(7) GRD [32] 
a=b=4.874 ]~ 0.30503(5) N-TOF [11] 
c=3.310 ~ 

TiO2 rutile-type x(O)=y(O) C2v 0.30491(5) XRD [13] 
a=b--4.594 A. 0.30476(6) N-TOF [14] 
c = 2.959 
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of mass of the electron cloud and the position of the 
nuclei, respectively. But the approach does not concur 
with classical electrostatic arguments. When calculating 
the dipole strength with the help of this formula, it is 
normally presupposed that the two charges have no con- 
siderable overlap, which is by no means the case for 
the nucleus of charge qN and the electron distribution 
of charge qe- On the contrary, the nucleus is totally em- 
bedded within the electron cloud and the approach 
seems hardly reliable. Most probably, it can provide only 
an upper limit for the separation of the centers of mass 
of both charge distributions. 

Differences between positional parameters as mea- 
sured by electron-sensitive versus nuclei-sensitive diffrac- 
tion procedures have been reported for (i) phosphorous 
[10] in SiP 2, (ii) fluorine [11, 12] in MnF 2 and (iii) oxy- 
gen [13-15] in TiO2, see Table 1. The first compound 
crystallizes in the pyrite-structure, and the two latter in 
the rutile-structure, for the latter see Fig. 1. The observed 
differences are very small, being on the order of 10 .3 ]~. 
Indeed, .they are much smaller than predicted by the 
approach A =P/(qN+qe) as discussed above. The posi- 
tional parameters, however, differ significantly and it is 
concluded that they account for a true physical effect. 
This is corroborated by the fact that spatial separations 
are only observed for ions on dipole-allowed lattice sites, 
but are consistently absent if dipoles are forbidden due 
to local symmetry restrictions. 

Also the second effect - the deviation from spherical 
symmetric charge distribution can be verified by mod- 
ern diffraction procedures. Routinely used computer 
programs allow for the calculation of ionic charge distri- 
bution as obtained from high-resolution single-crystal 
XRD in terms of spherical harmonics. Non-vanishing 
second-order moments of the electron distribution were 
obtained for many ions at dipole-allowed positions, e.g. 
for sulfur in FeS2 [16], for phosphorous in SiP 2 [10], 
for fluorine in MnF2 [12] and for oxygen in tetragonal 
BaTiO3 [17], to mention only a few examples. 

The dipolar deformation of charge distributions has 
an interesting and important effect on conventional X- 

ray structural analysis. For almost all structural refine- 
ments of intensity data gathered by X-ray diffraction, 
the utilized scattering factors were calculated for spheri- 
cally symmetric atoms and ions [18, 19]. Such scattering 
factors will invariably lead to systematic error if applied 
to positions of ions for which the symmetry of the lattice 
site permits the occurrence of dipole moments. More 
reliable positional parameters will be obtained when the 
structural refinement is coupled with a refinement of the 
charge distribution. A comparision of both procedures 
is possible for the case of the polarizable S ion in pyrite, 
because the sulfur positional parameter u was measured 
by both methods [16, 20]. The difference is found to 
be as small as 2x  10 .4 in units of the cell edge a or 
10-3 A on an absolute scale, and the effect is concluded 
to be very small. Although this point involves huge 
amounts of crystallographic data in principle, it is prob- 
ably significant only for high-precision work. However, 
the effect becomes very important when the spatial sepa- 
ration between the centroids of positive and negative 
charges of ionic dipoles is being measured.. 

These results imply that the crystal electrical field 
causes two different effects on ions at dipole-allowed lat- 
tice sites: (i) a difference between the nucleus' site and 
the controid of the electronic charge distribution and 
(ii) a deformation of the electron cloud. Although, this 
cannot be deemed an experimental determination of the 
dipole's strength, it evidences their occurrence. 

The concept of crystal radii 

Another consequence of dipole moments induced by 
crystal field concerns the concept of ionic radii, which 
is widely used in solid state science to estimate interionic 
distances in crystals. This concept approximates the 
charge distribution of an ion by reducing it to one geo- 
metric parameter, namely the radius of a sphere. It is 
evident that this approach needs to be generalised, if 
dipole-deformed charge distributions are to be associat- 
ed with some ions. In such cases it would be more suit- 
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Fig. 2. Schematic drawing of chemical bonds as they may occur 
between ions A and B, with B bearing a dipole moment p. The 
interionic distance d depends upon the angle 6 between the dipole 
p and the distance vector connecting both nuclei. Crystal radii 
r are proposed to be categorized by the parameters p and 3. This 
should improve the predictions of interionic distances in crystals 

able to attribute the spatial extent of charge distributions 
to other geometrical objects, such as ellipsoids for in- 
stance. As can be seen in Fig. 2, it would be useful to 
characterize ionic radii r with two additional parameters: 
(i) the dipole strength, p, when applicable and (ii) the 
angle 6 between the dipole vector and the interionic 
bond, abbreviated as r(p, 5). The geometrical conditions 
make it evident that these two parameters should pro- 
vide comparable results for the same ion in different sur- 
roundings. 

Consider for instance the sulfur ion, S-, in FeS2, 
which is bound to three Fe ions and one S ion. Its dipole 
strength was calculated [21J to be 0.77e~ or I2.3 
x 10 -a~ Cm. The sulfur-sulfur bond dss of 2.15 ~ [20J 

is oriented along the direction of the induced dipole, 
6=0.  Consequently, rs(O.77,0)=dss/2=1.08~ is ob- 
tained for S-. The values for the F e - S  bond are dyes 
= 2.26 ~ and 6 = 102 ~ but the value for the iron radius 
must now be specified. Since Fe ions reside on dipole- 
forbidden lattice sites, their usual ionic radius may be 
taken as obtained for the "spherical" ion by Pauling, 
rF~(0,0)=0.76 ~, according to [22]. If the sum of iron 
and sulfur radii is assumed to equal the bond length, 
rs(0.77,102 ~ + re~ = 2.26 ~, the second r(p, 6) value is ob- 
tained for the S- ion, yielding rs(0.77,102 ~ = 1.5 ~. This 
is much larger than the value obtained in direction of 
6 = 0 as given above. It is concluded that electrons would 
have been depleted from the positive edge of the S-dipole 
and accumulated at the negative end. The result is con- 
sistent with the dipole model of S ions in pyrite [21]. 

The tables of ionic radii today normally in use repre- 
sent only mean values obtained by averaging r(p, 6) over 
many p and 6. On the other hand, a tabulation scheme 
of all such r(p, 6) for each sort of ion would include 
second-order corrections, and would be more appro- 
priate for predicting ionic distances in heteropolar crys- 
tals. 

Spontaneous polarization 
and the pyroeleetrie coefficient 

Crystal-field induced dipoles provide a particularly sim- 
ple approach to describe electrically polarized crystals 

that have a macroscopic dipole moment without being 
subjected to an external field, i.e. pyroelectrics. Their di- 
pole moment is specified per unit volume, and is called 
spontaneous polarization Ps. Theories on pyroelectricity 
often assume that the polarization is associated with the 
whole crystallographic unit cell or a certain molecular 
configuration within it. In the present approach, how- 
ever, the ions on dipole-allowed lattice sites become the 
structural elements with which polarization is coupled. 
In the most general case, Ps is a vector with three differ- 
ent components. This can be expressed in terms of the 
developed notation as 

M M M 
i p j _  _e e 

E V-w E E cj ;l ruj (3) 
j= l .  j = l  j , k=l  

where nj is the unit vector of the j.th dipole, and Bjk 
accounts for the polarizabilities ~j and dipole-dipole in- 
teractions: Big = 6jk V/~Cj-- ~Jk" 

Spontaneous polarization occurs only in certain crys- 
tal classes and on so-called polar axes. It is well known 
that the number of independent polar axes within the 
32 crystal class is governed by the same distribution as 
the one given in the table in I. It can be seen from the 
table that for the compounds from crystal classes Oh, 
Th, Ogh and D2h discussed in the example section of I 
no spontaneous polarization occurs. In these solids, the 
sum over all dipole moments of the unit cell vanishes, 
although second-order moments are induced for some 
ions. However, for crystals belonging to the polar classes 
C1, Clh, C,~ and C,, n=2, 3, 4, 6, a macroscopically 
observable polarization may remain. 

The fact that the sum of dipoles of the unit cell differs 
from zero only for polar crystal classes can be derived 
from the principle of superposition of symmetry or Cur- 
ie's principle. According to it, the symn~etry of a lattice 
site cannot be higher than the symmetry of the unit cell 
[23]. Consequently, the polar properties of the ions - 
as induced dipole moments, for instance - only become 
measurable quantities for polar crystal classes. It has 
to be mentioned, that a crystal belonging to one of the 
polar classes does not neccessarily have a spontaneous 
polarisation strong enough to be measured. However, 
all crystals for which a nonzero Ps is experimentally de- 
termined, belong to one of the polar classes. 

The pyroelectric coefficient 7 is the derivative of spon- 
taneous polarization with respect to the temperature T. 
In general, 7 is a three-component vector like Ps, but 
since most pyroelectrics have only one polar axis it may 
often be considered a scalar quantity. Equation (3) gives 

(4) 



The first term of (4) is found to be proportional to Ps 

(~0 z / /3 t  2 LjBj kl fl r~n' 
/j,k 2(1  )e 

: - - 3  V ~ 2 LjBjk flk n j = - 3  SP(~ 
j,k 

(5) 

and the spur of the tensor of thermal expansion [24], 
Sp(cO. When evaluating the third sum of (4), one must 
realize that electrostatic lattice sums depend upon the 
structural coordinates of the ions. If an ion is situated 
on a dipole-allowed lattice site, it is described by at least 
one free coordinate or structural parameter (in the case 
of spontaneously polarized, tetragonal BaTiO3, these 
are, for instance, the oxygen and titanium deviations 
from their positions in the cubic phase [17]). The set 
of those parameters is symbotised by fj. It is their tem- 
perature-dependence that enters the derivative of fi~' 

opi": ~ otiS" o~j 
OT j=l O(j. 0 T  (6) 

The coefficients of the central term in eq. (4) become 

OB~* 20Bjk ,--2F~ [ 0 V\ 0flJk] 
- B;  W -  ~ l ~  (7a) 

If dipole-dipole interaction can be assumed to be insigni- 
ficant, the inverse of Bjk is sufficiently approximated by 
B~ 1 ---6jk tcjK In contrast with (7a) it is obtained 

Nj ] (~jk 
0B~T ~ [~T  - ~cjSp(c0j V (7b) 

This approximation finally makes it possible to calculate 
the pyroelectric coefficient(s) 7 using the formula 

5 e L [f17 c~ ~j -4- Kj 0/77 ~ G] 

The prefactor - 5 / 3  in (8) as compared to - 2 / 3  in (5) 
is caused by the occurrence of a factor - 3/3 in (7 b). 

The pyroelectric coefficient splits into three different 
parts: 7=yexW~pot+Ypos. The first, ?ex, is due to varia- 
tions in the external lengths of the unit cell with tempera- 
ture, i.e. thermal expansion. The third, 7pos, is caused 
by changes in the positions of ions with increasing tem- 
perature. The second, however, accounts for modifica- 
tions in the electronic structure that can significantly 
alter the ionic polarizabilities, 7pol. The dipole-dipole in- 
teraction will have an influence on  7pos only when further 
derivatives of the fie sums enter the formula. Their inclu- 
sion is obvious from (7a) and similar to (6). Sometimes, 
the pyroelectric coefficient is defined to be the change 
of P~ with temperature at constant volume [24], which 
would abolish 7ex from (8). In other cases, 7ex is included 
in the definition [233, but it is said to account for pyroe- 
lectric effects of the second kind or pseudo-pyroelectric 
effects [25]. The terminology of pyroelectricity, unfortu- 
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nately, is not uniform, and one must carefully verify 
which effect is actually being discussed. 

One may therefore conclude that spontaneous polar- 
ization P~ and the pyroelectric coefficient ;~ are deter- 
mined by atomic quantities as the polarizabilities, and 
such crystal properties as the electrostatic lattice sums 
and the tensor of thermal expansion. Ps and 7 may be 
calculated if the structural parameters, their variation 
with temperature and the polarizabilities are known. Or, 
vice versa, the measurement of both quantities Ps and 
? permits experimental determination of ionic polarizabi- 
lities ~cj and their temperature dependence. 

In principle, it should be possible, to invert a polar 
axis of a pyroelectric crystal by applying an external 
electrical field. This must cause a displacement of ions 
within the unit cell, which is accounted for by mirroring 
the coordinates at a plane perpendicular to the polar 
axis, leading to ( )=  - f j .  Solids for which this is possible 
without destroying their crystal structure by the external 
field are known as ferroelectrics. The formulaes pre- 
sented above should also account for their saturation 
polarization and the temperature dependence of the lat- 
ter. 

Piezoelectric coefficients 

The ten polar classes are a subset of the 21 non-centro- 
symmetric crystal classes. Their unit cells lack a center 
of inversion, but the sum of dipoles which may occur 
must not necessarily deviate from zero. Directed forces 
as pressure or stress, are able to transform all non-cen- 
trosymmetric crystals into polar crystals (except for O 
or 432). Then an electric dipole moment may also occur 
for solids, which show no spontaneous polarization 
under force-free conditions. In polar crystals, the magni- 
tude and direction of the macroscopic polarization as 
given by formula (3) is modified. This phenomena is well 
known as the direct piezoelectric effect. The piezoelectric 
constants d~;~ are related to the external stress ok and 
the induced polarization P~ through 

Pi=di,za,~,. (9) 

dix is a tensor having 18 independent components in 
the most general case. The index i now stands for the 
direction of polarization, which is induced or varied 
along one of the crystallographic axes a, b or c. The 
usual notation for ax is used here, i.e. a < 0  indicates 
a pressure and a > 0 stands for stress, 1 < 2 < 3 accounts 
for forces perpendicular to the x-, y- or z-axis, and 
4<2<_6 stands for shear forces parallel to the planes. 
If there is more than one ax acting upon the crystal, 
P~ becomes the sum over all non-zero products of dixcr;. 

To understand the piezoelectric effect in terms of the 
dipole concept, one should realize that, for dia+0, the 
unit cell is transformed into one of the polar classes. 
Depending on the crystal's symmetry and its orientation 
to the applied force, a new set of fi" and ~a values arises. 
Moreover, the point symmetry of formerly dipole-forbid- 
den ionic positions may be reduced to become a dipole- 
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allowed lattice site. Both effects may cause the sum of 
dipoles/2 of the unit cell to deviate from zero. The magni- 
tude of the ~ sums and crystal field induced dipoles/2 
depends upon the applied stress. These figures are 
marked by a tilde to distinguish them from those calcu- 
lated in the force-free case. Consequently, it would be 

, possible to calculate the di2 if the atoms' coordinates 
for the crystal under pressure or stress were known. 

The atom's coordinates, abbreviated by r, under am- 
bient conditions are related to those under pressure, f, 
by the strain tensor e~j 

f = r + ~ e i j r  i (10) 

that may be extracted from the inverse of Hooke's law 

ev=~Sv2a~ (11) 

when the stress tensor a~ and the elastic constants S~2 
are known. As usual in the theory of elasticity [26], 
the components of the symmetric strain tensor e~ are 
numbered in (11) through v, which is in agreement with 
the notation in (10) when i j=xx,  yy, zz, xy, xz, yz is 
inserted for v = 1,..., 6. With their help the strained coor- 
dinates f and the /~ sums can be obtained according 
to (I, 10c, d). For  the piezoelectric coefficients this finally 
yields 

M e 

di2:W~(k~_lLk/2knk)i----W2tT~(k,~LkB~l~nk)i. ( 1 2 )  

The meaning of the index i now is that only dipoles 
along the/-direction have be added. As for the pyroelect- 
ric coefficient, the formerly independent parameters d~2 
become functions of coordinates of the atoms, charges 
and polarizabilities. In addition, the piezoelectric coeffi- 
cients depend on the elastic constants S~2 that enter the 
induced dipole strength. The piezoelectric effect is nor- 
mally assumed to scale linear with the applied stress 
within certain limits. It is emphasized that (12) allows 
for a more general prediction of di~ as a function of 
0" 4 . 

Randomly induced dipoles 

Consider a crystalline model compound AC composed 
of positive ions A and negative C ions with charges ZA 
and Zc= --ZA. Both ions may reside on positions where 
crystal electric fields are forbidden and where no dipole 
moments are induced. Then, the A type ions are partially 
substituted by B ions of different valency zB :#ZA, and 
the solid solution AI_xBxC is obtained. Both sorts of 
ions are assumed to occupy the same lattice site, being 
the A position of AC. A is then said to be heterovalently 
substituted by B. With a probability of ( l - x )  one may 
find a charge ZA at that site, or with a complementary 
probability x one finds a charge zB, i.e. the charges on 
A sites are accounted for by a two-point probability 
distribution [27]. If charges on former A and C sites 
are named za and Z 2 ,  the mean value ofz~ now becomes 

~11 = (1 --X)Z A "~ XZ B. TO preserve the charge neutrality of 
the crystal, the C ions have to be recharged, and their 
mean value becomes z~ = - z ~ .  

In many cases heterovalent substitutions are limited 
to certain solulability ranges of x. In the following it 
will be assumed that the incorporation of B ions neither 
alters the space group of the solid nor the point symme- 
try of the lattice sites (if A sites are assumed to be occu- 
pied by the new ionic species A~-xB~). Small deviations 
of the cell and positional parameters may occur due to 
differences in the geometrical appearance of A and B 
ions. Laz_xSrxCuO4, which is orthorombic [-281 for T 
=10 K and 0 < x < 0 . 2 1 ,  can be regarded as a recent ex- 
ample for such consideration. 

The influence of statistically distributed charges on 
crystal electric fields and their associated dipoles should 
now be investigated. First, it has to be stated that, for 
a perfectly accidental distribution of A and B ions on 
A positions, the solid can no longer be named a crystal. 
A crystal is composed of a periodic array of repeated 
units and such a unit does not exist in the case of 
Aa_xBxC. Approximately, the unit cell of AC with a 
"average ion" As-xBx on A positions may be regarded 
as the repeated unit. However, one can never certainly 
predict whether an A site will be occupied by an A or 
a B ion. Instead, one now deals with probability distribu- 
tions. Thus, all properties of the solid that rely on the 
crystal structure will become statistically distributed 
quantities. 

Concerning the question of induced dipoles, the sym- 
metry of lattice sites as existing for x = 0 vanishes or 
is disrupted. In a strict sense the point symmetry group 
of every lattice site becomes C~ (1 in international nota- 
tion) for x + 0, since all axes of rotation, mirror planes 
and centers of inversion disappear. This is caused by 
the fact that every arbitrarily selected ion may be sur- 
rounded by an asymmetric charge configuration of A 
and B ions with a finite probability. This leads to a 
crystal electric field, the strength of which varies over 
different lattice sites and which may induce varying di- 
pole moments. For the i.th lattice site, the field's strength 
F~j due to oher charges of the j.th type is described by 
the infinite lattice sum 

e zj E o z~ (13) 
FiJ=4 7teo j ~.i r{j-e-ww j,~.i peij 

where the same notation as in I was used. The index 
j applies to all ions of the j.th type in the lattice. In 
the example of AI_~BxC, F21 accounts for the field of 
A and B ions at C lattice sites, i = 2 and j = 1. If both 
the A and C site are dipole-forbidden in accordance with 
the table in I, the average field vanishes 

ffi.= Eo • z}_J2=0. (14) 
J eW j,j*i Pij 

But what will the mean of the square look like? To 
anser this question, one should remember that charges 
ZA and ZB are spread on A sites according to the rules 
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of a two-point distribution. In general, an infinite sum 
of a two-point distributed quantity yields a normal or 
Gauss distribution quantity [27]. Consequently, one 
would expect the F~j to become normally distributed and 
to be entirely described by the first two statistical mo- 
ments, i.e. average ~ and variance_ 0-2(F/j). Eq. (14) 
showed that the first moment F~j equals zero in the case 
of the model compound A~_~BxC. Because it holds true 
for 0-2(F0=ff/2-(ff/~)2, the variance equals the mean 
square of the crystal field. The following calculation 
shows that the mean square field depends upon the sta- 
tistical scatter of the j.th charge distributions D2(zj) 
=z~-(2~) 2, which is named dispersion in probability 
theory, 

e 2 w 2 ~ = (  2 zj]{ V Zk] ZjZk 
E0 2 ,~,j,~ P~fl\k,k*~ P~k} ~ p~jp2 

z j  z k = ~  -J + 
�9 3 j , k , j *k  

z 
j +  z~ 

= ~.~-  
�9 Pii  j ,k P~P{k  ) Pi j  

-2 
zj - zj = D: (zj) R~j (15) 

New infinite lattice sum, R4j, has been introduced, 
and use has been made of the fact that the distribution 
of charges over one lattice site is not dependent on the 
distribution at other sites. The mean sum in the next 
to last line cancels according to (14). From (15) it can 
be concluded that the average square field is described 
by the dispersions of the two-point charge distributions. 
This result was to be expected, since both O z and 0 -2 

account for second moments of probability distributions 
and the variance of F~j equals its mean square. 

These considerations are only valid for ions on dipole- 
forbidden lattice sites as for the model compound 
AI_xBxC. It should be stated here without proof that 
in the case of dipole-allowed positions the mean sum 
in the next to last line of (15) would give cause for (fl~)2 
terms that would differ from zero on the i. position. 
Again, (15) would account for the equality ~-~- 2 F~j- 0- (F 0 
+ (~)2, having this time F~.+ 0. 

The varying strength of crystal electrical fields will 
cause the ions to become polarized in a statistical man- 
ner. Like the crystal fields, the randomly induced dipoles 
will become normally distributed quantities with an av- 
erage strength of zero. The effect of varying dipoles for 
the binding energy E~ of the solid becomes evident from 
the fact that the field strength enters into EB according 
to - p F/2 = - 4 7c ~o ~c F2/2. If disorder occurs in the solid, 
the binding energy will become a statistically distributed 
quantity also and its average EB has to be considered. 
Then, nonvanishing terms - 4 ~ e o  ~c~/2 arise and have 
to be included in the sum of terms of which E~ is com- 
posed of. Therefore, statistically induced dipoles supply 
a non-vanishing share to E8 although their average van- 
ishes. To distinguish these disorder-related dipoles from 
the symmetry-restricted dipoles as introduced in I, they 

will be named random and regular dipoles, respectively. 
The strength of random dipoles may be identified with 
the square root of (4rCeoK)2ff 7. 

With the help of the formulas given above the share 
of the binding energy due to random dipoles Ep .... is 
found to be 

~, /~i F/j E v r,, = - 4 n e o  K i  ~ 
' i = 1  Z j : ~  2 

_ Eo ~ KitCiOZ(zj)R~ 
2 1 Z - V  i,j= 

(16) 

which stands for a new type of polarization energy in 
solids. Also Ep .... can be seen to be always negative. 
Its strength increases with increasing disorder according 
to the dispersion D2(z) of the charge distributions that 
reaches its maximum at the point of maximum disorder. 

It has been argued in I that five regular dipole mo- 
ments occur for orthorhombic LaCuO4. Moreover, in 
the case of the  high-T~ superconducting compound 
La2-xSrxCuO4, varying crystal electric fields arise on 
all four ionic sites. This may enhance the binding energy 
significantly. The occurrence of random dipoles likely 
is an important characteristic of all HTSC cuprates, since 
for them certain ions are generally found to be heterova- 
lently substituted. Details of the calculation of a2(F~j) 
for La2-xSrxCuO4 will be presented in a forthcoming 
work [29]. 

It still should be pointed to the fact, that the concept 
of statistically induced dipoles will also be relevant for 
defect structures. The generation of vacancies in crystal 
lattices is often accompanied by a redistribution of 
charges among the ions. In non-stoichiometric Fel-xO, 
for instance, the iron deficit causes a 3 + charge on some 
Fe ions in contrast to the normal 2+  charge of Fe in 
FeO [30]. One then has to calculate the binding energy 
of (Fe3+)2x(Fe2+)l_ 3xO, with the induced dipoles acting 
as stabilising factor of the stoichiometry-deviation. The 
same line of argumentation can probably be applied to 
sulfur-deficient pyrite [31], FeS2_x, and many other 
compounds with strong stoichiometry deviations. It 
seems, that random dipoles provide an important mech- 
anism for stabilizing disorder in crystals. 

Conclusions 

The significance of polarized ions was discussed for some 
aspects of solid state science. The displacement of centers 
of mass of the nucleus and the electron cloud and corro- 
borating experimental results were shown. A new scheme 
for tabulating crystal radii in terms of dipole strength 
and orientation was proposed. Although it will be a la- 
borious task to calculate and collect the necessary large 
number of r(p, 6) values, such a table would enable the 
calculation of more precise interionic distances. The state 
of crystal modelling is expected to improve significantly 
by the approach, leading to much better predictions of 
crystal structures by numerical simulations. The strength 
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of spon t aneous  po la r iza t ion  of macroscopica l ly  polar -  
ized crystals and  the pyroelectr ic  coefficient can be calcu- 
la ted if s t ructural  da ta  and  ionic polarizabil i t ies  are 
known.  The  same  results were ob ta ined  for  piezoelectric 
coefficients if the elastic cons tan ts  of  the c o m p o u n d  are 
k n o w n  also. Newly  in t roduced  r a n d o m  dipoles tha t  arise 
in he terovalent ly  subst i tu ted  c o m p o u n d s  were shown to 
increase the b inding energy. This  m a y  be an i m p o r t a n t  
m e c h a n i s m  in the s tabi l isat ion of d isorder  in solids. I 
would  expect  tha t  induced dipoles are of  relevance for  
even m o r e  proper t ies  of  crystall ine solids. This  work  ad- 
dressed only a few of  them,  which m a y  be regarded  as 
a p re l iminary  selection. 
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